Home
Class 11
MATHS
If AD, BE and CF are the medians of Del...

If AD, BE and CF are the medians of `DeltaABC`, then the value of `bar(BC).bar(AD)+bar(CA).bar(BE)+bar(AB).bar(CF)=`

A

0

B

`bar0`

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • APPENDICES (REVISION EXERCISE)

    AAKASH SERIES|Exercise CROSS PRODUCT OF TWO VECTORS|17 Videos
  • APPENDICES (REVISION EXERCISE)

    AAKASH SERIES|Exercise MULTIPLE PRODUCT OF TWO VECTORS|21 Videos
  • APPENDICES (REVISION EXERCISE)

    AAKASH SERIES|Exercise PROPERTIES OF VECTORS|17 Videos
  • 3D-COORDINATE SYSTEM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|40 Videos
  • CHANGE OF AXES

    AAKASH SERIES|Exercise Practice Exercise|29 Videos

Similar Questions

Explore conceptually related problems

If bar(AD),bar(BE) and bar(CF) " are the medians of " DeltaABC , then find the value of bar(BC).bar(AD)+bar(CA).bar(BE)+bar(AB).bar(CF) .

In DeltaABC, " if " BC = a, CA = b and AB = C, " then what is the value of " bar(AB).bar(AC)+bar(BC).bar(BA)+bar(CA).bar(CB) ?

If, in a right angled triangle ABC, the hypo tenus AB =p, then bar(AB).bar(AC)+bar(BC).bar(BA)+bar(CA).bar(CB) =

ABCDE is a pentagon then bar(AB)+bar(AE)+bar(BC)+bar(DC)+bar(ED)+bar(AC)=

If I is the centre of a circle inscribed in a DeltaABC , then abs(bar(BC))bar(IA)+abs(bar(CA))bar(IB)+abs(bar(AB))bar(IC)=

If bar(a), bar(b), bar(c ) respresents the vertices A, B, and C respectively of DeltaABC then prove that |(bar(a) xx bar(b)) + (bar(b) xx bar(c ))+ (bar(c ) xx bar(a))| is twice the area of DeltaABC .

If D, E and F are respectively the mid-points of AB, AC and BC in DeltaABC then bar(BE)+bar(AF)=

ABCDEF is a regular hexagon. bar(AB)+bar(AC)+bar(AD)+bar(EA)+bar(FA)=

Find the value of [bar(i)+bar(j)+bar(k),bar(i)-bar(j),bar(i)+2bar(j)-bar(k)] .

ABC is an equitateral triangle of side 'a'. Then bar(AB).bar(BC)+bar(BC).bar(CA)+bar(CA).bar(AB) =

AAKASH SERIES-APPENDICES (REVISION EXERCISE)-DOT PRODUCT OF TWO VECTORS
  1. If AD, BE and CF are the medians of DeltaABC, then the value of bar(...

    Text Solution

    |

  2. baralpha=a(1)bari+a(2)barj+a(3)bark where a(1), a(2), a(3) are rationa...

    Text Solution

    |

  3. In DeltaABC, angleB is a right angle. The medians AD and BE are at rig...

    Text Solution

    |

  4. The distance between the line vecr = 2hati - 2hatj + 3hatk + lambda (...

    Text Solution

    |

  5. O' is the origin in the cartesian plane. From the origin 'O' take poin...

    Text Solution

    |

  6. Let there be two points A, B on the curve y=x^(2) in the plane XOY sat...

    Text Solution

    |

  7. If A,B,C,D are four points in space satisfying bar(AB).bar(CD)=k[|bar...

    Text Solution

    |

  8. If the vectors barb=(tan alpha, -1, sqrt(4"sin"(alpha)/(2))), barc=(ta...

    Text Solution

    |

  9. If baru and barv are unit vectors at an angle alpha and bara unit vect...

    Text Solution

    |

  10. The angle between any two opposite pair of edges of a regular tetrahed...

    Text Solution

    |

  11. If |veca|=2, |vecb|=3 and |2veca-vecb|=5, then |2veca+vecb| equals

    Text Solution

    |

  12. If the vectors veca = hati-hatj+2hatk, vecb=2hati+4hatj+hatk and vecc=...

    Text Solution

    |

  13. Let veca and vecb be two unit vectors. If the vectors vecc=hata+2hatb ...

    Text Solution

    |

  14. If hata, hatb & hatc are unit vectors satisfying sqrt(3) veca-vecb=vec...

    Text Solution

    |

  15. Let veca=2hati-hatj +hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2h...

    Text Solution

    |

  16. Equation of sphere whose centre is at 7bari-4barj+bark and radius |3b...

    Text Solution

    |

  17. The cartesian equation of the sphere whose centre is C(5, 2, 3) and w...

    Text Solution

    |

  18. The centre and radius of the sphere r^(2) - 2r. (3i + 4j - 5k) + 1 = 0...

    Text Solution

    |

  19. Equation of the sphere described on the join of the points bara=2bari+...

    Text Solution

    |

  20. The radius of the sphere (barr-2bari+3barj-bark). (barr+3bari-barj+2b...

    Text Solution

    |