Home
Class 11
MATHS
If AD, BE and CF are the medians of Del...

If AD, BE and CF are the medians of `DeltaABC`, then the value of `bar(BC).bar(AD)+bar(CA).bar(BE)+bar(AB).bar(CF)=`

A

0

B

`bar0`

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • APPENDICES (REVISION EXERCISE)

    AAKASH SERIES|Exercise CROSS PRODUCT OF TWO VECTORS|17 Videos
  • APPENDICES (REVISION EXERCISE)

    AAKASH SERIES|Exercise MULTIPLE PRODUCT OF TWO VECTORS|21 Videos
  • APPENDICES (REVISION EXERCISE)

    AAKASH SERIES|Exercise PROPERTIES OF VECTORS|17 Videos
  • 3D-COORDINATE SYSTEM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|40 Videos
  • CHANGE OF AXES

    AAKASH SERIES|Exercise Practice Exercise|29 Videos

Similar Questions

Explore conceptually related problems

If bar(AD),bar(BE) and bar(CF) " are the medians of " DeltaABC , then find the value of bar(BC).bar(AD)+bar(CA).bar(BE)+bar(AB).bar(CF) .

In DeltaABC, " if " BC = a, CA = b and AB = C, " then what is the value of " bar(AB).bar(AC)+bar(BC).bar(BA)+bar(CA).bar(CB) ?

Knowledge Check

  • If, in a right angled triangle ABC, the hypo tenus AB =p, then bar(AB).bar(AC)+bar(BC).bar(BA)+bar(CA).bar(CB) =

    A
    P
    B
    `P^(2)`
    C
    `P^(3)`
    D
    `P^(4)`
  • ABCDE is a pentagon then bar(AB)+bar(AE)+bar(BC)+bar(DC)+bar(ED)+bar(AC)=

    A
    `3bar(AC)`
    B
    `bar(AC)`
    C
    `2bar(AC)`
    D
    `4bar(AC)`
  • If I is the centre of a circle inscribed in a DeltaABC , then abs(bar(BC))bar(IA)+abs(bar(CA))bar(IB)+abs(bar(AB))bar(IC)=

    A
    `bar(0)`
    B
    `bar(IA)+bar(IB)+bar(IC)`
    C
    `(bar(IA)+bar(IB)+bar(IC))/3`
    D
    `2(bar(IA)+bar(IB)+bar(IC))`
  • Similar Questions

    Explore conceptually related problems

    If bar(a), bar(b), bar(c ) respresents the vertices A, B, and C respectively of DeltaABC then prove that |(bar(a) xx bar(b)) + (bar(b) xx bar(c ))+ (bar(c ) xx bar(a))| is twice the area of DeltaABC .

    Find the value of [bar(i)+bar(j)+bar(k),bar(i)-bar(j),bar(i)+2bar(j)-bar(k)] .

    If D, E and F are respectively the mid-points of AB, AC and BC in DeltaABC then bar(BE)+bar(AF)=

    ABCDEF is a regular hexagon. bar(AB)+bar(AC)+bar(AD)+bar(EA)+bar(FA)=

    ABC is an equitateral triangle of side 'a'. Then bar(AB).bar(BC)+bar(BC).bar(CA)+bar(CA).bar(AB) =