Home
Class 11
MATHS
Find the number of ordered pairs (x,y) s...

Find the number of ordered pairs (x,y) satisfying the equations `sin^(-1)x+sin^(-1)y=(2pi)/3` and `cos^(-1)x-cos^(-1)y=-(pi)/3`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise EXERCISE I|31 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise EXERCISE-II|71 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise EXERCISE 7.1 ( SHORT ANSWER QUESTIONS)|45 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIONS)|7 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos

Similar Questions

Explore conceptually related problems

If Sin^(-1)x+Sin^(-1)y=2pi//3,"then "Cos^(-1)x+Cos^(-1)y=

The number of solution of (x,y) so that sin^(-1)x+sin^(-1)y=(2pi)/3,cos^(-1)x-cos^(-1)y=-(pi)/3 is

Point P(x,y) satisfying the equation sin^(-1)x+cos^(-1)y+cos^(-1)(2xy)=(pi)/2 lies on

Point P(x, y) satisfying the equation Sin^(-1)x+Cos^(-1)y+Cos^(-1)(2xy)=pi/2 lies on

If sin^(-1)x+sin^(-1)y=pi/2 and sin2x=cos2y , then

If x, y in [0, 2 pi] , then the total number of ordered pairs (x, y) satisfying the equation sinx cos y = 1 is

The total number of ordered pairs (x,y) satisfying |x|+|y|=4, sin((pi)x^(2)//3)=1 is equal to

The number of values of y in [-2pi,2pi] satisfying the equation |sin2x|+|cos2x|=|siny| is