Home
Class 11
MATHS
If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi then...

If `tan^(-1)x+tan^(-1)y+tan^(-1)z=pi` then `x+y+z=`

A

`1-xyz`

B

`-1-xyz`

C

`1+xyz`

D

`-1+xyz`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise EXERCISE-II|71 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|7 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIONS)|7 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/2 then

If Tan^(-1)x+Tan^(-1)y+Tan^(-1)z=pi//2 then 1 - xy - yz - zx =

If Tan^(-1) x + Tan^(-1) y + Tan^(-1) z = pi then prove that x+y+z = xyz .

If tan^(-1)(3)+tan^(-1)(x)=tan^(-1)(8) then x=

If Tan^(-1)x+Tan^(-1)y + Tan^(-1)z = (pi)/2 , then prove that xy + yz + zx = 1

If tan^(-1)x,tan^(-1)y,tan^(-1)z are in A.P then (2y)/(1-y^(2))=