Home
Class 11
MATHS
tan^(-1)(3/2)-tan^(-1)(1/5)=...

`tan^(-1)(3/2)-tan^(-1)(1/5)=`

A

`(pi)/2`

B

`(pi)/4`

C

`(pi)/3`

D

`(pi)/6`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise EXERCISE-II|71 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|7 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIONS)|7 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)(2+)tan^(-1)(3)=

4tan^(-1)(1/5)-tan^(-1)(1/239)=

1/2gt0,1/3gt0 and (1/2)(1/3)lt1 impliestan^(-1)(1/2)+tan^(-1)(1/3) ="tan"^(-1)(1/2+1/3)/(1-1/2 1/3)=tan^(-1)(1)=(pi)/4

1/3gt0,3/4gt0impliestan^(-1)(1/3)-tan^(-1)(3/4) =tan^(-1)((1/3-3/4)/(1+1/3 . 3/4))=tan^(-1)((-5)/15)=tan^(-1)(1/3) =-tan^(-1)(1/3)

5/3gt0,1/4gt0impliestan^(-1)(5/3)-tan^(-1)(1//4) =tan^(-1)((5/3-1/4)/(1+5/3. 1/4))=tan^(-1)(1)=(pi)/4

"tan"^(-1)1/8+"tan"^(-1)1/2+"tan"^(-1)1/5=

The number of integral values of x satisfying the equation tan^(-1)(3x)+tan^(-1)(5x)=tan^(-1)(7x)+tan^(-1)(2x) is

Prove that tan^(-1)((1)/(2))+tan^(-1)((1)/(5))+tan^(-1)((1)/(8))=(pi)/(4)

If tan^(-1)(3)+tan^(-1)(x)=tan^(-1)(8) then x=