Home
Class 11
MATHS
Prove that sin^(2) theta = ((a+b)^(2))/(...

Prove that `sin^(2) theta = ((a+b)^(2))/(4ab)` is not possible for any real `theta` where `a, b in R` and `|a|!= |b|`.

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMERTIC RATIOS

    AAKASH SERIES|Exercise EXERCISE - I|35 Videos
  • TRIGONOMERTIC RATIOS

    AAKASH SERIES|Exercise EXERCISE- II|52 Videos
  • TRIGONOMERTIC RATIOS

    AAKASH SERIES|Exercise EXERCISE - 1.1 ( SHORT ANSWER QUESTIONS)|19 Videos
  • TRIGNOMETRIC EQUATIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIONS)|2 Videos
  • TRIGONOMETRIC EQUATIONS

    AAKASH SERIES|Exercise Practice Exercise|49 Videos

Similar Questions

Explore conceptually related problems

If A=sin^(2) theta + cos^(4) theta , then for all values of theta , where

Prove that (sin theta + sin 2 theta )/(1+cos 0 + cos 2 theta )= tan theta

a sin^(2) theta + b cos^(2) theta =c implies tan^(2) theta =

Prove that sin ^(2) theta + sin ^(2) (theta+(pi)/(3))+ sin ^(2) (theta-(pi)/(3))=(3)/(2)

Prove that cos^(2)theta sin^(3)theta=1/16(2 sin theta+sin 3theta-sin5 theta)

If tan theta . =(b)/(a) then prove that acos 2 theta +b sin 2 theta =a