Home
Class 12
CHEMISTRY
mf of the following cell at 298 K in V i...

mf of the following cell at 298 K in V is `x""xx10^(-2).Zn|Zn^(2+)(0.1M)||Ag^(+)(0.01M)|Ag` The value of x is ______ Rounded off the the nearest integer)
Givne `E_(Zn^(+)//Zn)^(0)=-0.76V,E_(Ag^(+)//Ag)^(0)=+0.80V,(2.303RT)/(F)=0.059`]

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given electrochemical cell problem, we will follow these steps: ### Step 1: Identify the half-reactions The cell notation given is: \[ \text{Zn} | \text{Zn}^{2+} (0.1 \, M) || \text{Ag}^{+} (0.01 \, M) | \text{Ag} \] The half-reactions are: - **Anode (oxidation)**: \[ \text{Zn} \rightarrow \text{Zn}^{2+} + 2e^{-} \] - **Cathode (reduction)**: \[ \text{Ag}^{+} + e^{-} \rightarrow \text{Ag} \] ### Step 2: Balance the overall reaction To balance the electrons transferred, we multiply the cathode reaction by 2: \[ 2 \text{Ag}^{+} + 2e^{-} \rightarrow 2 \text{Ag} \] The overall reaction becomes: \[ \text{Zn} + 2 \text{Ag}^{+} \rightarrow \text{Zn}^{2+} + 2 \text{Ag} \] ### Step 3: Calculate the standard cell potential (E°cell) Using the standard reduction potentials: - \( E^{\circ}_{\text{Zn}^{2+}/\text{Zn}} = -0.76 \, V \) - \( E^{\circ}_{\text{Ag}^{+}/\text{Ag}} = +0.80 \, V \) The standard cell potential is calculated as: \[ E^{\circ}_{\text{cell}} = E^{\circ}_{\text{cathode}} - E^{\circ}_{\text{anode}} \] \[ E^{\circ}_{\text{cell}} = 0.80 \, V - (-0.76 \, V) = 0.80 \, V + 0.76 \, V = 1.56 \, V \] ### Step 4: Apply the Nernst equation The Nernst equation is given by: \[ E_{\text{cell}} = E^{\circ}_{\text{cell}} - \frac{2.303RT}{nF} \log \left( \frac{[\text{Zn}^{2+}]}{[\text{Ag}^{+}]^2} \right) \] Where: - \( R = 8.314 \, J/(mol \cdot K) \) - \( T = 298 \, K \) - \( n = 2 \) (number of electrons transferred) - \( F = 96500 \, C/mol \) Given \( \frac{2.303RT}{F} = 0.059 \, V \) at 298 K, we can substitute this into the equation. ### Step 5: Substitute the concentrations Substituting the values: - \( [\text{Zn}^{2+}] = 0.1 \, M \) - \( [\text{Ag}^{+}] = 0.01 \, M \) The Nernst equation becomes: \[ E_{\text{cell}} = 1.56 \, V - 0.059 \log \left( \frac{0.1}{(0.01)^2} \right) \] Calculating the logarithm: \[ \frac{0.1}{(0.01)^2} = \frac{0.1}{0.0001} = 1000 \] Thus, \[ \log(1000) = 3 \] ### Step 6: Calculate Ecell Substituting back into the equation: \[ E_{\text{cell}} = 1.56 \, V - 0.059 \cdot 3 \] \[ E_{\text{cell}} = 1.56 \, V - 0.177 \, V \] \[ E_{\text{cell}} \approx 1.383 \, V \] ### Step 7: Express in the required format We need to express \( E_{\text{cell}} \) in the form \( x \times 10^{-2} \, V \): \[ 1.383 \, V = 138.3 \times 10^{-2} \, V \] ### Final Answer Rounding off \( 138.3 \) to the nearest integer gives: \[ x = 138 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise CHEMISTRY (SECTION A)|40 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise CHEMISTRY (SECTION B)|20 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise CHEMISTRY (SECTION-A)|20 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise CHEMISTRY|150 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|561 Videos

Similar Questions

Explore conceptually related problems

Consider the cell at 25^(@) C Zn | Zn^(2+) (aq), , (1 M) || Fe^(3+) (aq) , Fe^(2+) (aq) | Pt(s) The fraction of total iron present as Fe^(3+) ion at the cell potential of 1 . 5000 V is x xx 10 ^(-2) . The value of x is ________ (Nearest integer) (Given : E_(Fe^(3+)//Fe^(2+))^(0) = 0 . 77 V, E_(Zn^(2+)//Zn)^(0) = - 0 . 76 V

Calculate the emf of the following cell at 25^(@)C . Zn|Zn^(2+) (0.001 M) || H^(+)(0.01 M) | H_(2) (1 bar) | Pt(s). Given that E_((Zn^(2+)//Zn))^(@)=-0.76V, E_((H^(+)//H_(2)))^(@)=0.00" V "

For the cell Cu (s) | Cu ^(2+) (aq) (0.1 M) || Ag ^(+) (aq) (0.01 M) | Ag (s) the cell potential E _(1) = 0.3095 V For the cell Cu (s) | Cu ^(+2) (aq) (0.01 M) || Ag ^(+) (aq)( 0. 001 M) | Ag (s) the cell potential = _______ xx 10 ^(-2) V. (Round off the Nearest Integer). [Use : (2.303 RT)/(F) =0.059 ]

Find E_(cell)^(@) for the cell : Zn | Zn^(2+)(1M) || Ag^(+)(1M) | Ag [Given that : E_(Zn//Zn^(2+))^(@)=0.76" V" , E_(Ag^(+)//Ag)^(@)=0.80" V" .

For the galvanic cell Zn(s)[Zn^2+ (aq)||Ag^+(aq) Ag(s)] , G° of the reaction in joule will be E°_ (Zn^(2+)) /( Zn )= - 0.76V , E°_( Ag_+)/(Ag )= 0.80 V