Home
Class 11
MATHS
If the matrix A=((1,-1),(-1,1)) then A^(...

If the matrix `A=((1,-1),(-1,1))` then `A^(n+1)=`

A

`2((1,-1),(-1,1))`

B

`2n((1,-1),(-1,1))`

C

`2^(n)((1,-1),(-1,1))`

D

`2^(n+1)((1,-1),(-1,1))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH SERIES|Exercise DETERMINANTS- EXERCISE - I|15 Videos
  • MATRICES

    AAKASH SERIES|Exercise DETERMINANTS- EXERCISE - II|52 Videos
  • MATRICES

    AAKASH SERIES|Exercise ALGEBRA OF MATRICES - EXERCISE - II|34 Videos
  • MATHEMATICAL INDUCTION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) LEVEL-I (Principle of Mathematical Induction) (Straight Objective Type Questions)|55 Videos
  • MAXIMA & MINIMA

    AAKASH SERIES|Exercise EXERCISE-III|35 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,1),(1,1)] and ninN then A^(n)=

Show that the matrix A=[(0, 1,-1),(-1,0,1),(1,-1,0)] is a skew symmetric matrix.

Show that the matrix A=[(1, -1, 5),(-1,2,1),(5,1,3)] is a symmetric matrix.

If the product of the matrix B=[(2,6,4),(1,0,1),(-1,1,-1)] with a matrix A has inverset C=[(-1,0,1),(1,1,3),(2,0,2)] , then A^(-1)=

Find the rank of the matrix A = [(1,0,-4),(2,-1,3)]

The inverse of the matrix [(7,-3,3),(-1,1,0),(-1,0,-1)] is

Find the adjoint and inverse of the matrix [{:(2,1,2),(1,0,1),(2,2,1):}]

The matrix |(1,0,0),(2,1,0),(3,1,1)| is

Find the rank of the matrix A=[(1,4),(0,1)] ,

Find the rank of the matrix A=[(1,3),(0,1)]

AAKASH SERIES-MATRICES -ALGEBRA OF MATRICES -PRACTICE EXERCISE
  1. If A is a symmetric matrix and n epsilon N, then A^(n) is

    Text Solution

    |

  2. If A=[(0,1),(1,0)] then A^(2004)=

    Text Solution

    |

  3. If A=[(1,3),(3,4)] and A^(2)-kA-5I(2)=O then k=

    Text Solution

    |

  4. If the matrix A=((1,-1),(-1,1)) then A^(n+1)=

    Text Solution

    |

  5. [(2,-1),(3,-2)]^(n)=[(1,0),(0,1)] if n is

    Text Solution

    |

  6. If A=[(1,1),(1,1)] and ninN then A^(n)=

    Text Solution

    |

  7. IF A=[{:(costheta,sintheta),(-sintheta,costheta):}] then show that for...

    Text Solution

    |

  8. If A=[(0,a+1,b-2),(2a-1,0,c-2),(2b+1,2+x,0)] is skew symmetric then a+...

    Text Solution

    |

  9. If A is a skew symmetric matrix and n is an even positive integer then...

    Text Solution

    |

  10. A=[a(ij)](3xx3) is a square matrix so that a(ij)=i^(2)-j^(2) then A is...

    Text Solution

    |

  11. A is a symmetric matrix or skew symmetric matrix. Then A^(2)is

    Text Solution

    |

  12. If A="diag "["1 -1 2"],B=" diag "["2 3 -1"] and 3A+4B = diag [...

    Text Solution

    |

  13. Observe the following lists and matching from List - I to List - II is...

    Text Solution

    |

  14. If A=[(a,b),(b,a)] and A^(2)=[(alpha, beta),(beta, alpha)] then

    Text Solution

    |

  15. If A and B are square matrices of size nxxn such that A^(2)-B^(2)=(A-B...

    Text Solution

    |

  16. Let ((1,2),(3,4)) and B=((a,0),(0,b)), a, b epsilon N. Then

    Text Solution

    |

  17. If A=[(1,0),(1,1)] and I=[(1,0),(0,1)] then which one of the following...

    Text Solution

    |

  18. If A=[(5a,-b),(3,2)] and A. adjA = A.A^(T) then 5a+b is equal to

    Text Solution

    |

  19. Let A be 3xx3 matrix such A^(2)-5A+7I=0 statement 1 : A^(-1)=(1)/(7)(5...

    Text Solution

    |

  20. A=[(-4,-1),(3,1)] then the determinant of the matrix (A^(2016)-2.A^(2-...

    Text Solution

    |