Home
Class 11
MATHS
Let P and Q be 3xx3 matrices with P!=Q. ...

Let P and Q be `3xx3` matrices with `P!=Q`. If `P^(3)=Q^(3)` and `P^(2)Q=Q^(2)P`, then determinant of `(P^(2)+Q^(2))` is equal to

A

`-2`

B

1

C

0

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH SERIES|Exercise INVERSE OF A MATRIX- EXERCISE - I|21 Videos
  • MATRICES

    AAKASH SERIES|Exercise INVERSE OF A MATRIX- EXERCISE - II|29 Videos
  • MATRICES

    AAKASH SERIES|Exercise DETERMINANTS- EXERCISE - II|52 Videos
  • MATHEMATICAL INDUCTION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) LEVEL-I (Principle of Mathematical Induction) (Straight Objective Type Questions)|55 Videos
  • MAXIMA & MINIMA

    AAKASH SERIES|Exercise EXERCISE-III|35 Videos

Similar Questions

Explore conceptually related problems

A.M of P^2+Q^2 and P^2-Q^2 is….

Find the product : (p^(2) + q^(2))(2p - 3q + 4r)

Find the product: (p^(2)+q^(2))(p-2q+3r)

Find the degree of: pq+p^2q-p^2q^2

Let P and Q be two 2xx2 matrices. Consider the statements (i) PQ=OimpliesO or Q=O or both (ii) PQ=I_(2)impliesP=Q^(-1) (iii) (P+Q)^(2)=P^(2)+2PQ+Q^(2) . Then

Three vectors vec(P), vec(Q), vec(R) obey vec(P) + vec(Q) = vec(R) and P^(2) + Q^(2) = R^(2) the angle between vec(P) & vec(Q) is

Factorise the following p^(4) - 2p^(2)q^(2) + q^(4)

If 2pth term of a G.P is q^(2) and 2qth term is P^(2) , then (p + q)th term is

AAKASH SERIES-MATRICES -DETERMINANTS-PRACTICE EXERCISE
  1. |(cos (alpha+beta),-sin (alpha+beta),cos 2 beta),(sin alpha, cos alpha...

    Text Solution

    |

  2. If |{:(a,b,c),(b,c,a),(c,a,b):}|^(x)=|{:(2bc-a^(2),c^(2),b^(2)),(c^(2)...

    Text Solution

    |

  3. If a="cos"(4pi)/3+I"sin"(4pi)/3,then |(1,1,1),(1,a,a^(2)),(1,a^(2),a)|...

    Text Solution

    |

  4. If A+B+C=pi then the value of |(sin(A+B+C), sinB, cosC),(-sinB,0,tanA)...

    Text Solution

    |

  5. If a,b,c are different and |(0,x-a,x-b),(x+a,0,x-c),(x+b,x+c,0)|=0 the...

    Text Solution

    |

  6. Let the three digit number A28, 3B9,62C, where A,B,C are integers betw...

    Text Solution

    |

  7. If f(x)=|(2cosx,1,0),(x-pi//2,2cosx,1),(0,1,2cosx)| then (df)/(dx) at ...

    Text Solution

    |

  8. If a,b,c are different and |(a,a^(2),a^(3)-1),(b,b^(2),b^(3)-1),(c,c^(...

    Text Solution

    |

  9. Statement - I : If |{:(x+1,-3,4),(-5,x+2,2),(4,1,x-6):}|=0 then x=0 ...

    Text Solution

    |

  10. If |{:(5,-3),(a,3):}|=18,|{:(1,0,0),(2,3,4),(5,-6,b):}|=45,|{:(2,1,0),...

    Text Solution

    |

  11. Match the following from List - I to List - II |{:("List - I","-Li...

    Text Solution

    |

  12. Assertion (A) : |{:(1,2,2),(2,3,4),(3,5,6):}|=0 Reason (R) : If the ...

    Text Solution

    |

  13. If |{:(6i , -3i , 1) , (4 , 3i , -1) , (20 , 3 , i):}| = x +iy show t...

    Text Solution

    |

  14. If 1, omega, omega^(2) are the cube roots of unity then Delta=|(1,omeg...

    Text Solution

    |

  15. If a^(2)+b^(2)+c^(2)=-2 and f(x)=|(1+a^(2)x,(1+b^(2))x,(1+c^(2))x),((1...

    Text Solution

    |

  16. If a(1),a(2),…………..,a(n), ……… are in G.P and a(i)gt0 for each i then t...

    Text Solution

    |

  17. If D=|(1,1,1),(1,1+x,1),(1,1,1+y)| for x!=0,y!=0 then D is

    Text Solution

    |

  18. Let a,b, c be such that b(a+c)!=0. If |(a,a+1,a-1),(-b,b+1,b-1),(c,c-1...

    Text Solution

    |

  19. Let P and Q be 3xx3 matrices with P!=Q. If P^(3)=Q^(3) and P^(2)Q=Q^(2...

    Text Solution

    |

  20. |{:(x^(2)+x,x+1,x-2),(2x^(2)+3x-1,3x,3x-3),(x^(2)+2x+3,2x-1,2x-1):}|=a...

    Text Solution

    |