Home
Class 11
MATHS
a^(2) sin 2B+ b^(2) sin 2A =...

` a^(2) sin 2B+ b^(2) sin 2A = `

A

` Delta `

B

` 2 Delta `

C

` 3Delta`

D

` 4 Delta `

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    AAKASH SERIES|Exercise EXERCISE - II|148 Videos
  • PROPERTIES OF TRIANGLES

    AAKASH SERIES|Exercise PRACTICE EXERCISE|132 Videos
  • PROPERTIES OF TRIANGLES

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|12 Videos
  • PLANES

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS|30 Videos
  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise PRACTICE EXERCISES|55 Videos

Similar Questions

Explore conceptually related problems

b^(2) sin 2C + C^(2) sin 2B = 2 b sin A

In a Delta ABC " if " a^(2) sin (B - C) + b^(2) sin (C - A) + c^(2) sin (A - B) = 0 , then triangle is

If A+B+C=(pi)/(2) , then prove that sin ^(2) A+ sin ^(2) B + sin ^(2) C=1-2 A sin B sin C .

If A, B , C are angles in a triangle, then the sin ^(2)A+sin ^(2)B - sin ^(2) C =2 sin A sin B cos C

In DeltaABC, b^(2) sin2C+c^(2)sin 2B=

sin^(2) A cos^(2)B + cos ^(2) A sin^(2) B + sin^(2) A sin^(2) B+ cos^(2) A cos^(2) B=

If A,B, C are angles in a triangle, then prove that: sin^(2) A + sin^(2) B - sin^(2) C =2 sin A sin B cos C

Let 0 lt A, B lt (pi)/(2) satisfying the equation 3 sin ^(2) A + 2 sin ^(2) B =1 and 3 sin 2A - 2 sin B =0 then A +2B =

(sin ^(2) A - sin ^(2) B)/( sin A cos A - sin B cos B) is equal to