Home
Class 11
PHYSICS
Find (2A)xx(-3B), if A =2hati - hatj and...

Find `(2A)xx(-3B)`, if `A =2hati - hatj` and `B =(hatj+hatk)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \( (2A) \times (-3B) \) given \( A = 2\hat{i} - \hat{j} \) and \( B = \hat{j} + \hat{k} \), we will follow these steps: ### Step 1: Calculate \( 2A \) Given \( A = 2\hat{i} - \hat{j} \): \[ 2A = 2(2\hat{i} - \hat{j}) = 4\hat{i} - 2\hat{j} \] ### Step 2: Calculate \( -3B \) Given \( B = \hat{j} + \hat{k} \): \[ -3B = -3(\hat{j} + \hat{k}) = -3\hat{j} - 3\hat{k} \] ### Step 3: Set up the cross product \( (2A) \times (-3B) \) Now we need to compute: \[ (2A) \times (-3B) = (4\hat{i} - 2\hat{j}) \times (-3\hat{j} - 3\hat{k}) \] ### Step 4: Use the determinant method for the cross product We can express the vectors in a determinant form: \[ \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -2 & 0 \\ 0 & -3 & -3 \end{vmatrix} \] ### Step 5: Calculate the determinant Using the determinant formula: \[ = \hat{i} \begin{vmatrix} -2 & 0 \\ -3 & -3 \end{vmatrix} - \hat{j} \begin{vmatrix} 4 & 0 \\ 0 & -3 \end{vmatrix} + \hat{k} \begin{vmatrix} 4 & -2 \\ 0 & -3 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \( \hat{i} \): \[ = \hat{i}((-2)(-3) - (0)(-3)) = \hat{i}(6) \] 2. For \( \hat{j} \): \[ = -\hat{j}((4)(-3) - (0)(0)) = -\hat{j}(-12) = 12\hat{j} \] 3. For \( \hat{k} \): \[ = \hat{k}((4)(-3) - (-2)(0)) = \hat{k}(-12) \] ### Step 6: Combine the results Putting it all together, we have: \[ (2A) \times (-3B) = 6\hat{i} + 12\hat{j} - 12\hat{k} \] ### Final Answer Thus, the result of \( (2A) \times (-3B) \) is: \[ 6\hat{i} + 12\hat{j} - 12\hat{k} \]

To solve the problem of finding \( (2A) \times (-3B) \) given \( A = 2\hat{i} - \hat{j} \) and \( B = \hat{j} + \hat{k} \), we will follow these steps: ### Step 1: Calculate \( 2A \) Given \( A = 2\hat{i} - \hat{j} \): \[ 2A = 2(2\hat{i} - \hat{j}) = 4\hat{i} - 2\hat{j} \] ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    DC PANDEY ENGLISH|Exercise Single Correct|39 Videos
  • VECTORS

    DC PANDEY ENGLISH|Exercise Subjective|24 Videos
  • VECTORS

    DC PANDEY ENGLISH|Exercise Exercise 5.2|4 Videos
  • UNITS, DIMENSIONS & ERROR ANALYSIS

    DC PANDEY ENGLISH|Exercise Medical entrances gallery|32 Videos
  • WAVE MOTION

    DC PANDEY ENGLISH|Exercise Integer Type Question|11 Videos

Similar Questions

Explore conceptually related problems

Find angle between A and B where, (a) A = 2hati and B =- 6 hati (b) A = 6hatj and B =- 2hatk (c) A = (2hati = 3hatj) and B = 4 hatk (d) A = 4hati and B = (-3hati + 3hatj) .

find vecA xx vecB if vecA = hati - 2 hatj + 4 hatk and vecB = 3 hati - hatj + 2hatk

Obtain the magnitude and direction cosines of vector (A-B), if A=2hati+3hatj+hatk, B=2hati+2hatj+3hatk

if A = 2hati - 3hatj+7hatk, B = hati + 2hatj and C=hatj - hatk . Find A(BxxC)

if A = 2hati - 3hatj+7hatk, B = hati + 2hatj and C=hatj - hatk . Find A(BxxC)

The position vectors of points A and B are hati - hatj + 3hatk and 3hati + 3hatj - hatk respectively. The equation of a plane is vecr cdot (5hati + 2hatj - 7hatk)= 0 The points A and B

Find magnitude of A-2 B +3 C, where, A = 2hati+3hatj, B = hati + hatj and c =hatk.

Find the volume of the parallelepiped with co-terminous edges 2 hati + hatj - hatk, hati + 2 hatj + 3 hatk and - 3 hati - hatj + hatk

Find |vecaxxvecb| , if veca=2hati-7hatj+7hatk and vecb=3hati-2hatj+2hatk

Prove that the vectors A=2hati-3hatj+hatk and B=hati+hatj + hatk are mutually perpendicular .