Home
Class 12
MATHS
Write the simplest form of tan^(-1)((cos...

Write the simplest form of `tan^(-1)((cosx-sinx)/(cosx+sinx)), 0 lt x lt (pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
`= (pi)/(4) - x`
Promotional Banner

Topper's Solved these Questions

  • SUPPLEMENTARY EXAM QUESTION PAPER JULY- 2015

    SUNSTAR PUBLICATION|Exercise PART - C (Answer any ten questions)|14 Videos
  • SUPPLEMENTARY EXAM QUESTION PAPER JULY- 2015

    SUNSTAR PUBLICATION|Exercise PART - D (Answer any six questions)|12 Videos
  • SUPPLEMENTARY EXAM QUESTION PAPER JULY- 2015

    SUNSTAR PUBLICATION|Exercise PART - E (Answer any one question).|4 Videos
  • SUPPLEMENTARY EXAM QUESTION PAPER JULY -2014

    SUNSTAR PUBLICATION|Exercise PART -E|4 Videos

Similar Questions

Explore conceptually related problems

Write the simplest from of tan^(-1)((cos x -sin x)/(cos x+sin x)), 0 lt x lt pi/2

Write the following in the simplest form of "tan"^(-1)((cosx-sinx)/(cosx+sinx)),0ltxlt(pi)/2

Write in the simplest form of tan^(-1)sqrt((1-cosx)/(1+cosx)),0ltxltpi

If y="tan"^(-1)((cosx-sinx)/(cosx+sinx)) , then (dy)/(dx)=

Simplify: tan^(-1)[(acosx-bsinx)/(b cosx+a sinx)]

int dx/(1-cosx -sinx) =

Simplify: tan^(-1)[(2cosx-3sinx)/(3cosx+2sinx)],2/3tanx> -1

int (sinx-cosx)/(cosx+sinx)dx =