Home
Class 12
MATHS
Prove that sin ^(-1) x + cos^(-1) x=p...

Prove that ` sin ^(-1) x + cos^(-1) x=pi/2 , x in [-1,1]`

Text Solution

Verified by Experts

The correct Answer is:
`= (pi)/(2)`
Promotional Banner

Topper's Solved these Questions

  • SUPPLEMENTARY EXAM QUESTION PAPER JULY- 2015

    SUNSTAR PUBLICATION|Exercise PART - C (Answer any ten questions)|14 Videos
  • SUPPLEMENTARY EXAM QUESTION PAPER JULY- 2015

    SUNSTAR PUBLICATION|Exercise PART - D (Answer any six questions)|12 Videos
  • SUPPLEMENTARY EXAM QUESTION PAPER JULY- 2015

    SUNSTAR PUBLICATION|Exercise PART - E (Answer any one question).|4 Videos
  • SUPPLEMENTARY EXAM QUESTION PAPER JULY -2014

    SUNSTAR PUBLICATION|Exercise PART -E|4 Videos

Similar Questions

Explore conceptually related problems

prove that 3sin^(-1)x=sin^(-1)(3x-4x^(3)), x in [(-1)/2,1/2]

Prove that 3cos^(-1)x=cos^(-1)(4x^(3)-3x)" "x in [1/2,1]

If sin ^(-1) x+cos ^(-1)(1-x)=0 then x=

If cos^(-1) x > sin^(-1) x , then :

If 4sin^(-1)x + cos^(-1)x = pi, then x equals

sin ^(-1) x=(pi)/(5) , then cos ^(-1) x=

Prove that tan^(-1)((cosx)/(1+sinx))=pi/4-x/2x in [-pi/2,pi/2]