Home
Class 12
MATHS
Find the maximum value of |(1,1,1),(1,1+...

Find the maximum value of `|(1,1,1),(1,1+ sin theta, 1),(1,1, 1+ sin theta)|`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the determinant \( D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \sin \theta \end{vmatrix} \), we can follow these steps: ### Step 1: Apply Column Operations We can simplify the determinant by applying column operations. We will perform the following operations: - Replace column \( C_1 \) with \( C_1 - C_2 \) - Replace column \( C_2 \) with \( C_2 - C_3 \) This gives us: \[ D = \begin{vmatrix} 1 - (1 + \sin \theta) & 1 & 1 \\ 1 - 1 & 1 + \sin \theta - 1 & 1 \\ 1 - 1 & 1 & 1 + \sin \theta - 1 \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} -\sin \theta & 1 & 1 \\ 0 & \sin \theta & 1 \\ 0 & 1 & \sin \theta \end{vmatrix} \] ### Step 2: Calculate the Determinant Now we can calculate the determinant of the simplified matrix: \[ D = -\sin \theta \begin{vmatrix} \sin \theta & 1 \\ 1 & \sin \theta \end{vmatrix} \] Calculating the 2x2 determinant: \[ \begin{vmatrix} \sin \theta & 1 \\ 1 & \sin \theta \end{vmatrix} = \sin^2 \theta - 1 \] Thus, we have: \[ D = -\sin \theta (\sin^2 \theta - 1) = -\sin \theta (\sin^2 \theta - 1) = -\sin \theta (-\cos^2 \theta) = \sin \theta \cos^2 \theta \] ### Step 3: Find the Maximum Value To find the maximum value of \( D = \sin \theta \cos^2 \theta \), we can use the fact that \( \sin \theta \) and \( \cos \theta \) are bounded between -1 and 1. Using the identity \( \cos^2 \theta = 1 - \sin^2 \theta \), we can express \( D \) in terms of \( \sin \theta \): \[ D = \sin \theta (1 - \sin^2 \theta) \] Let \( x = \sin \theta \), then: \[ D = x(1 - x^2) = x - x^3 \] ### Step 4: Differentiate to Find Critical Points To find the maximum value, we differentiate \( D \) with respect to \( x \): \[ \frac{dD}{dx} = 1 - 3x^2 \] Setting the derivative to zero to find critical points: \[ 1 - 3x^2 = 0 \Rightarrow 3x^2 = 1 \Rightarrow x^2 = \frac{1}{3} \Rightarrow x = \frac{1}{\sqrt{3}} \] ### Step 5: Evaluate the Maximum Value Now we evaluate \( D \) at \( x = \frac{1}{\sqrt{3}} \): \[ D = \frac{1}{\sqrt{3}} \left( 1 - \left(\frac{1}{\sqrt{3}}\right)^2 \right) = \frac{1}{\sqrt{3}} \left( 1 - \frac{1}{3} \right) = \frac{1}{\sqrt{3}} \cdot \frac{2}{3} = \frac{2}{3\sqrt{3}} = \frac{2\sqrt{3}}{9} \] ### Step 6: Check Endpoints We also need to check the endpoints \( x = 0 \) and \( x = 1 \): - For \( x = 0 \), \( D = 0 \) - For \( x = 1 \), \( D = 1 \cdot 0 = 0 \) Thus, the maximum value of \( D \) occurs at \( x = \frac{1}{\sqrt{3}} \). ### Final Answer The maximum value of \( |D| \) is \( \frac{2\sqrt{3}}{9} \).
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -1

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos
  • MODEL TEST PAPER -19

    ICSE|Exercise SECTION A|1 Videos

Similar Questions

Explore conceptually related problems

if theta in R then maximum value of Delta =|{:(1,,1,,1),(1 ,,1+sintheta,,1),(1 ,, 1,,1+cos theta):}| is

The number of solutions of equation |(1,1,1), (1,1+sin theta,1), (1,1, 1+cot theta)|=0 in theta in [0, 2 pi] is equal to

Find the general value of theta 4 sin ^(2) theta =1

Find the maximum value of 1+sin(pi/4+theta) + 2cos(pi/4-theta) .

Find the general value of theta 2 sin theta - 1 =0

(1)/(sin theta)+(1)/(cos theta)=

If sin theta+costheta=1, then the minimum value of (1+cosectheta)(1+sectheta) is

Find the value of (1+cos theta+sin theta)/(1-cos theta +sin theta)

Find the value of θ if cos theta=sqrt(3)(1-sin theta)

Statement I The maximum value of sin theta+costheta is 2. Statement II The maximum value of sin theta is 1 and that of cos theta is also 1.