Home
Class 12
MATHS
Evaluate : int(e^(2x))/(e^(x) + 2) dx...

Evaluate : `int(e^(2x))/(e^(x) + 2) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \frac{e^{2x}}{e^x + 2} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = e^x + 2 \). Then, we need to find \( dt \): \[ dt = e^x \, dx \quad \Rightarrow \quad dx = \frac{dt}{e^x} \] From our substitution, we can express \( e^x \) in terms of \( t \): \[ e^x = t - 2 \] ### Step 2: Rewrite the Integral Substituting \( e^x \) and \( dx \) into the integral: \[ I = \int \frac{e^{2x}}{e^x + 2} \, dx = \int \frac{(e^x)^2}{e^x + 2} \, dx = \int \frac{(t - 2)^2}{t} \cdot \frac{dt}{t - 2} \] Now, substituting \( e^x = t - 2 \): \[ I = \int \frac{(t - 2)^2}{t} \cdot \frac{dt}{t - 2} = \int \frac{(t - 2)}{t} \, dt \] ### Step 3: Simplify the Integral Now, we can simplify the integrand: \[ \frac{(t - 2)}{t} = 1 - \frac{2}{t} \] Thus, the integral becomes: \[ I = \int \left( 1 - \frac{2}{t} \right) dt \] ### Step 4: Integrate Now we can integrate term by term: \[ I = \int 1 \, dt - 2 \int \frac{1}{t} \, dt = t - 2 \ln |t| + C \] ### Step 5: Substitute Back Now we substitute back \( t = e^x + 2 \): \[ I = (e^x + 2) - 2 \ln |e^x + 2| + C \] ### Final Answer Thus, the evaluated integral is: \[ I = e^x + 2 - 2 \ln(e^x + 2) + C \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -1

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos
  • MODEL TEST PAPER -19

    ICSE|Exercise SECTION A|1 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(e^(2x))/(1+e^x)dx

Evaluate: int(e^(2x))/(e^(2x)-2)dx

Evaluate int(x+e^(2x))dx

Evaluate: (i) int(e^(2x))/(e^(2x)-2)\ dx

Evaluate: int(e^x)/(1+e^(2x))dx

Evaluate: int(e^x)/(1+e^(2x))dx

Evaluate: inte^(2x)/(1+e^(4x))dx

Evaluate: int(e^x+1)/(e^x+x)dx

Evaluate: int(e^(-x))/(16+9e^(-2x))\ dx

Evaluate: int(e^(2x)-2e^x)/(e^(2x)+1)dx