Home
Class 12
MATHS
Evaluate : int tan x tan 2 x tan 3x dx...

Evaluate : `int tan x tan 2 x tan 3x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \tan x \tan 2x \tan 3x \, dx \), we can use the identity for the tangent of a sum. ### Step-by-Step Solution: 1. **Use the Identity for \( \tan 3x \)**: We know that: \[ \tan 3x = \frac{\tan x + \tan 2x}{1 - \tan x \tan 2x} \] This can be rearranged to express \( \tan 3x \) in terms of \( \tan x \) and \( \tan 2x \). 2. **Rearranging the Equation**: From the identity: \[ \tan 3x - \tan x \tan 2x = \tan x + \tan 2x \] We can express \( \tan x \tan 2x \tan 3x \) as: \[ \tan x \tan 2x \tan 3x = \tan 3x - \tan x - \tan 2x \] This is our first equation. 3. **Substituting into the Integral**: Now substitute this expression into the integral: \[ \int \tan x \tan 2x \tan 3x \, dx = \int (\tan 3x - \tan x - \tan 2x) \, dx \] 4. **Integrating Each Term**: Now we can integrate each term separately: - The integral of \( \tan 3x \): \[ \int \tan 3x \, dx = -\frac{1}{3} \log |\cos 3x| + C_1 \] - The integral of \( \tan x \): \[ \int \tan x \, dx = -\log |\cos x| + C_2 \] - The integral of \( \tan 2x \): \[ \int \tan 2x \, dx = -\frac{1}{2} \log |\cos 2x| + C_3 \] 5. **Combining the Results**: Now combine all these results: \[ \int \tan x \tan 2x \tan 3x \, dx = \left(-\frac{1}{3} \log |\cos 3x| + \log |\cos x| + \frac{1}{2} \log |\cos 2x|\right) + C \] where \( C \) is a constant of integration. ### Final Result: Thus, the final result is: \[ \int \tan x \tan 2x \tan 3x \, dx = -\frac{1}{3} \log |\cos 3x| + \log |\cos x| + \frac{1}{2} \log |\cos 2x| + C \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -1

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos
  • MODEL TEST PAPER -19

    ICSE|Exercise SECTION A|1 Videos

Similar Questions

Explore conceptually related problems

Evaluate int tan x tan(x+1)dx .

Evaluate: int(tanx-x)tan^2x dx

Evaluate int\tan5x\dx

Evaluate int tan^(3)x dx

inttanx tan 2x tan 3x dx is equal to

Evaluate int\tan^2x\dx

Evaluate: int (tan x-x)tan^(2)xdx

Evaluate int tan^(-1) x dx

Evaluate int (tanx+tan^3x)/(1+tan^3x)dx

The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan ^(-1) ((2 tan x+1)/(sqrtA))+C Then the value of A is: