Home
Class 12
MATHS
Differentiate tan^(-1) ((sqrt(1+x^(2))-1...

Differentiate `tan^(-1) ((sqrt(1+x^(2))-1)/(x))` w.r.t. `tan^(-1) ((x)/(sqrt(1-x^(2))))`.

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \tan^{-1} \left( \frac{\sqrt{1+x^2}-1}{x} \right) \) with respect to \( z = \tan^{-1} \left( \frac{x}{\sqrt{1-x^2}} \right) \), we will follow these steps: ### Step 1: Differentiate \( y \) with respect to \( x \) Let \( y = \tan^{-1} \left( \frac{\sqrt{1+x^2}-1}{x} \right) \). Using the chain rule, the derivative of \( y \) with respect to \( x \) is given by: \[ \frac{dy}{dx} = \frac{1}{1 + \left( \frac{\sqrt{1+x^2}-1}{x} \right)^2} \cdot \frac{d}{dx} \left( \frac{\sqrt{1+x^2}-1}{x} \right) \] ### Step 2: Differentiate the inner function Now we need to differentiate \( \frac{\sqrt{1+x^2}-1}{x} \) using the quotient rule: Let \( u = \sqrt{1+x^2}-1 \) and \( v = x \). Then, \[ \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Calculating \( \frac{du}{dx} \): \[ \frac{du}{dx} = \frac{x}{\sqrt{1+x^2}} \] Calculating \( \frac{dv}{dx} \): \[ \frac{dv}{dx} = 1 \] Now substituting back into the quotient rule: \[ \frac{d}{dx} \left( \frac{\sqrt{1+x^2}-1}{x} \right) = \frac{x \cdot \frac{x}{\sqrt{1+x^2}} - (\sqrt{1+x^2}-1) \cdot 1}{x^2} \] ### Step 3: Simplify the derivative This simplifies to: \[ \frac{x^2/\sqrt{1+x^2} - (\sqrt{1+x^2}-1)}{x^2} \] ### Step 4: Differentiate \( z \) with respect to \( x \) Now we differentiate \( z = \tan^{-1} \left( \frac{x}{\sqrt{1-x^2}} \right) \): Using the chain rule again: \[ \frac{dz}{dx} = \frac{1}{1 + \left( \frac{x}{\sqrt{1-x^2}} \right)^2} \cdot \frac{d}{dx} \left( \frac{x}{\sqrt{1-x^2}} \right) \] Calculating \( \frac{d}{dx} \left( \frac{x}{\sqrt{1-x^2}} \right) \) using the quotient rule: Let \( a = x \) and \( b = \sqrt{1-x^2} \): \[ \frac{d}{dx} \left( \frac{a}{b} \right) = \frac{b \cdot \frac{da}{dx} - a \cdot \frac{db}{dx}}{b^2} \] Calculating \( \frac{da}{dx} = 1 \) and \( \frac{db}{dx} = \frac{-x}{\sqrt{1-x^2}} \): Substituting back gives: \[ \frac{\sqrt{1-x^2} \cdot 1 - x \cdot \left( \frac{-x}{\sqrt{1-x^2}} \right)}{1-x^2} \] ### Step 5: Combine the derivatives Now we have both \( \frac{dy}{dx} \) and \( \frac{dz}{dx} \). The final result is: \[ \frac{dy}{dz} = \frac{\frac{dy}{dx}}{\frac{dz}{dx}} \] ### Final Step: Simplify the expression After substituting and simplifying, we will arrive at the final expression for \( \frac{dy}{dz} \).
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -1

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos
  • MODEL TEST PAPER -19

    ICSE|Exercise SECTION A|1 Videos

Similar Questions

Explore conceptually related problems

If x in((1)/(sqrt2)1). Differentiate tan^(-1)(sqrt(1-x^(2))/(x)) w.r. t. cos^(-1)(2xsqrt(1-x^(2))).

Differentiate tan^-1((4sqrt(x))/(1-4x))

Differentiate tan^(-1)'(sqrt(1+x^(2))-1)/(x) w.r.t. tan^(-1)x , when x ne 0 .

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x)w.r.t tan^(-1)x ,w h e r ex!=0.

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x)w.r.t tan^(-1)x ,w h e r ex!=0.

Differentiate tan^(-1)[(sqrt(1+x^2)-1)/x] with respect to x

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to sin^(-1)((2x)/(1+x^2)),

Differentiate tan^(-1)((3x-x^3)/(1-3x^2)) , |x|<1/sqrt3 w.r.t tan^(-1)(x/sqrt(1-x^2))

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x ,x!=0.

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x ,x!=0.