Home
Class 12
MATHS
Evaluate: int(0)^(pi) xlog (sin x) dx...

Evaluate: `int_(0)^(pi) xlog (sin x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{0}^{\pi} x \log(\sin x) \, dx \), we can use a property of definite integrals. The property states that: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] ### Step 1: Apply the property We can express \( I \) in terms of \( \pi - x \): \[ I = \int_{0}^{\pi} x \log(\sin x) \, dx = \int_{0}^{\pi} (\pi - x) \log(\sin(\pi - x)) \, dx \] ### Step 2: Simplify the integral Using the identity \( \sin(\pi - x) = \sin x \), we can rewrite the integral: \[ I = \int_{0}^{\pi} (\pi - x) \log(\sin x) \, dx \] ### Step 3: Expand the integral Now we can expand this integral: \[ I = \int_{0}^{\pi} \pi \log(\sin x) \, dx - \int_{0}^{\pi} x \log(\sin x) \, dx \] ### Step 4: Combine the integrals Let’s denote the second integral as \( I \): \[ I = \pi \int_{0}^{\pi} \log(\sin x) \, dx - I \] ### Step 5: Solve for \( I \) Now, we can add \( I \) to both sides: \[ 2I = \pi \int_{0}^{\pi} \log(\sin x) \, dx \] Thus, we can express \( I \): \[ I = \frac{\pi}{2} \int_{0}^{\pi} \log(\sin x) \, dx \] ### Step 6: Evaluate the integral \( \int_{0}^{\pi} \log(\sin x) \, dx \) We know from integral calculus that: \[ \int_{0}^{\pi} \log(\sin x) \, dx = -\pi \log(2) \] ### Step 7: Substitute back Now we substitute this result back into our expression for \( I \): \[ I = \frac{\pi}{2} \cdot (-\pi \log(2)) = -\frac{\pi^2}{2} \log(2) \] ### Final Result Thus, the final answer is: \[ I = -\frac{\pi^2}{2} \log(2) \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -1

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos
  • MODEL TEST PAPER -19

    ICSE|Exercise SECTION A|1 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(0)^((pi)/(2)) log (sin x) dx

int_(0)^(pi) x sin^(2) x dx

Evaluate : int_(0)^(pi//2) sin x dx

Evaluate int_(0)^(pi)(sin 6x)/(sinx) dx .

int_(0)^(pi) x sin x cos^(2)x\ dx

Evaluate : int_(0)^(pi) |cos x| dx

Evaluate : int_(0)^(pi)(|cos x| + |sin x|)dx .

Evaluate : int_(0)^(pi)sqrt(1+sin2x)dx .

Evaluate : int_(0)^((pi)/(2)) (x sin x.cosx)/(sin^(4)x+cos^(4)x)dx

int_(0)^(pi) [2sin x]dx=