Home
Class 11
MATHS
Evaluate the following limits : Lim(x t...

Evaluate the following limits :
`Lim_(x to1/2)((8x-3)/(2x-1)-(4x^(2)+1)/(4x^(2)-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \frac{1}{2}} \left( \frac{8x - 3}{2x - 1} - \frac{4x^2 + 1}{4x^2 - 1} \right), \] we will follow these steps: ### Step 1: Rewrite the limit expression We start with the limit expression: \[ \lim_{x \to \frac{1}{2}} \left( \frac{8x - 3}{2x - 1} - \frac{4x^2 + 1}{4x^2 - 1} \right). \] ### Step 2: Simplify the second term The denominator \(4x^2 - 1\) can be factored using the difference of squares: \[ 4x^2 - 1 = (2x - 1)(2x + 1). \] Thus, we rewrite the second term: \[ \frac{4x^2 + 1}{4x^2 - 1} = \frac{4x^2 + 1}{(2x - 1)(2x + 1)}. \] ### Step 3: Find a common denominator Now we find a common denominator for the two fractions: \[ \text{Common Denominator} = (2x - 1)(2x + 1). \] Rewriting the limit expression with the common denominator gives us: \[ \lim_{x \to \frac{1}{2}} \frac{(8x - 3)(2x + 1) - (4x^2 + 1)(2x - 1)}{(2x - 1)(2x + 1)}. \] ### Step 4: Expand the numerator Now we expand the numerator: 1. Expanding \((8x - 3)(2x + 1)\): \[ = 16x^2 + 8x - 6x - 3 = 16x^2 + 2x - 3. \] 2. Expanding \((4x^2 + 1)(2x - 1)\): \[ = 8x^3 - 4x^2 + 2x - 1. \] Now, substituting these expansions back into the limit gives: \[ \lim_{x \to \frac{1}{2}} \frac{(16x^2 + 2x - 3) - (8x^3 - 4x^2 + 2x - 1)}{(2x - 1)(2x + 1)}. \] ### Step 5: Combine like terms Now combine the terms in the numerator: \[ = \lim_{x \to \frac{1}{2}} \frac{16x^2 + 2x - 3 - 8x^3 + 4x^2 - 2x + 1}{(2x - 1)(2x + 1)}. \] This simplifies to: \[ = \lim_{x \to \frac{1}{2}} \frac{-8x^3 + 20x^2 - 2}{(2x - 1)(2x + 1)}. \] ### Step 6: Factor the numerator Factoring the numerator if possible or simplifying further. We can factor out \(-2\): \[ = \lim_{x \to \frac{1}{2}} \frac{-2(4x^3 - 10x^2 + 1)}{(2x - 1)(2x + 1)}. \] ### Step 7: Evaluate the limit Now substitute \(x = \frac{1}{2}\): 1. The denominator becomes: \[ (2(\frac{1}{2}) - 1)(2(\frac{1}{2}) + 1) = (0)(2) = 0. \] 2. The numerator becomes: \[ -2(4(\frac{1}{2})^3 - 10(\frac{1}{2})^2 + 1) = -2(4(\frac{1}{8}) - 10(\frac{1}{4}) + 1) = -2(\frac{1}{2} - \frac{5}{2} + 1) = -2(-2) = 4. \] Thus, we have a \(0/0\) form, indicating we may need to apply L'Hôpital's Rule or further simplify. ### Step 8: Cancel common factors Notice that \(2x - 1\) cancels out from the numerator and denominator, leading us to: \[ \lim_{x \to \frac{1}{2}} \frac{4x + 2}{2x + 1}. \] ### Step 9: Final evaluation Now substituting \(x = \frac{1}{2}\): \[ \frac{4(\frac{1}{2}) + 2}{2(\frac{1}{2}) + 1} = \frac{2 + 2}{1 + 1} = \frac{4}{2} = 2. \] Thus, the final answer is: \[ \boxed{2}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(D)|9 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(E )|13 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to 1/2)(4x^(2)-1)/(2x-1)

Evaluate the following limits : Lim_(x to 1) (x^(2)-1)/(x-1)

Evaluate the following limits : Lim_(x to oo) (4x-3)/(2x+7)

Evaluate the following limits : lim_( x to 1/2) (4x^(2)-1)/(2x-1)

Evaluate the following limits : Lim_( x to 1) ((2x-3)(x-1))/(2x^(2)+x-3)

Evaluate the following limits : Lim_(x to -1) (x^(2)-1)/(x+1)

Evaluate the following limits : Lim_(xto1) (x-1)/(2x^(2)-7x+5)

Evaluate the following limits : Lim_(x to -1) ((x-4)(x+1))/(x^(2)+3x+2)

Evaluate the following limit: (lim)_(x->-1//2)(8x^3+1)/(2x+1)

Evaluate the following limit: (lim)_(x->-1//2)(8x^3+1)/(2x+1)