Home
Class 11
MATHS
If Lim(x to 1) (x^(4)-1)/(x-1)=Lim(x to...

If ` Lim_(x to 1) (x^(4)-1)/(x-1)=Lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2))` , find the value of k .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) such that \[ \lim_{x \to 1} \frac{x^4 - 1}{x - 1} = \lim_{x \to k} \frac{x^3 - k^3}{x^2 - k^2}. \] ### Step 1: Calculate the left-hand limit First, we evaluate the limit as \( x \) approaches 1 for the expression \( \frac{x^4 - 1}{x - 1} \). The expression \( x^4 - 1 \) can be factored as: \[ x^4 - 1 = (x^2 - 1)(x^2 + 1) = (x - 1)(x + 1)(x^2 + 1). \] Thus, we can rewrite the limit: \[ \lim_{x \to 1} \frac{x^4 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)(x^2 + 1)}{x - 1}. \] Since \( x - 1 \) cancels out, we have: \[ \lim_{x \to 1} (x + 1)(x^2 + 1). \] Now substituting \( x = 1 \): \[ (1 + 1)(1^2 + 1) = 2 \cdot 2 = 4. \] ### Step 2: Set up the right-hand limit Next, we evaluate the limit as \( x \) approaches \( k \) for the expression \( \frac{x^3 - k^3}{x^2 - k^2} \). Using the difference of cubes and the difference of squares, we can rewrite the limit: \[ x^3 - k^3 = (x - k)(x^2 + xk + k^2), \] \[ x^2 - k^2 = (x - k)(x + k). \] Thus, we have: \[ \lim_{x \to k} \frac{x^3 - k^3}{x^2 - k^2} = \lim_{x \to k} \frac{(x - k)(x^2 + xk + k^2)}{(x - k)(x + k)}. \] Again, \( x - k \) cancels out, leading to: \[ \lim_{x \to k} \frac{x^2 + xk + k^2}{x + k}. \] ### Step 3: Substitute \( x = k \) Now substituting \( x = k \): \[ \frac{k^2 + k^2 + k^2}{k + k} = \frac{3k^2}{2k} = \frac{3k}{2}. \] ### Step 4: Set the limits equal Now we equate the two limits: \[ 4 = \frac{3k}{2}. \] ### Step 5: Solve for \( k \) To find \( k \), we multiply both sides by 2: \[ 8 = 3k. \] Now, divide by 3: \[ k = \frac{8}{3}. \] ### Final Answer Thus, the value of \( k \) is \[ \boxed{\frac{8}{3}}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(D)|9 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(E )|13 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(B)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

If lim_(x to 1) (x^(3) - 1)/(x - 1) = lim_(x to k) (x^(4) - k^(4))/(x^(3) - k^(3)) , find the value of k.

If lim_(x to 2) (x - 2)/(""^(3)sqrt(x) - ""^(3)sqrt(2)) = lim_(x to k) (x^(2) - k^(2))/(x - k) find the value of K

If int_0^1(3x^2+2x+k)dx=0, find the value of k

If lim_(xto0) (log (3+x)-log (3-x))/(x)=k , the value of k is

If lim_(xto2) (tan(x-2).(x^(2)+(k-2)x-2k))/((x^(2)-4x+4))=5 , then find the value of k.

If lim_(xrarr0) (log (3+x)-log (3-x))/(x)=k , the value of k is

If the third derivative of (x^(4))/((x-1)(x-2)) is (-12k)/((x-2)^(4))+(6)/((x-1)^(4)) , then the value of k is

Evaluate lim_(x to 1) ((1)/(x^(2) + x - 2) - (x)/(x^(3) - 1))

If (lim)_(x->a)(x^3-a^3)/(x-a)=(lim)_(x->1)(x^4-1)/(x-1) , find all possible value o adot