Home
Class 12
MATHS
Evaluate : int (1) ^(e) ( dx)/( x (1 + l...

Evaluate : `int _(1) ^(e) ( dx)/( x (1 + log x))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int_{1}^{e} \frac{dx}{x(1 + \log x)}, \] we will use substitution. ### Step 1: Substitution Let \( t = \log x \). Then, we differentiate: \[ dt = \frac{1}{x} dx \quad \Rightarrow \quad dx = x \, dt = e^t \, dt. \] ### Step 2: Change the limits of integration When \( x = 1 \): \[ t = \log(1) = 0. \] When \( x = e \): \[ t = \log(e) = 1. \] ### Step 3: Rewrite the integral Now we can rewrite the integral in terms of \( t \): \[ \int_{0}^{1} \frac{e^t \, dt}{e^t(1 + t)} = \int_{0}^{1} \frac{dt}{1 + t}. \] ### Step 4: Evaluate the integral The integral \[ \int \frac{dt}{1 + t} = \log(1 + t) + C. \] Now we will evaluate it from \( 0 \) to \( 1 \): \[ \left[ \log(1 + t) \right]_{0}^{1} = \log(1 + 1) - \log(1 + 0) = \log(2) - \log(1). \] Since \( \log(1) = 0 \), we have: \[ \log(2) - 0 = \log(2). \] ### Final Answer Thus, the value of the integral is \[ \log(2). \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - B (In sub-parts (i) and (ii) choose the correct option and in sub-parts (iii) to (v), answer the questions as instructed.) |5 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - B|5 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int _(-1) ^(1) e^(x) dx .

Evaluate : int_(-1)^(1)e^(x)dx

Evaluate : int _(-1) ^(1) (dx)/( e^(x) + 1) dx

int_(1//e)^(e) (dx)/(x(log x)^(1//3))

Evaluate : int(1)/(e^(x)-1)dx

Evaluate : int_(0)^(1)log ((1)/(x) -1) dx

Evaluate : int_(1)^(2) (cos (log x))/(x) dx

Evaluate: int(e^x+1)/(e^x+x)dx

Evaluate: int_(0)^(1) log (1/x-1)dx

Evaluate: int(x+1)+e^x\ dx

ICSE-MODEL TEST PAPER - 7-Section - A
  1. Using L' Hospital' s rule prove that lim(x to (pi)/(2)) (sec x - tan x...

    Text Solution

    |

  2. Show that the function f (x)={ {:(3x^(2) + 12 x - 1,- 1 le x le 2 )...

    Text Solution

    |

  3. Solve : cos ^(-1) x + sin ^(-1) "" (x)/( 2) = (pi)/(6)

    Text Solution

    |

  4. If x^(y) * y^(x) = (x + y) ^(5) , " find " (dy)/( dx)

    Text Solution

    |

  5. Evaluate : int (1) ^(e) ( dx)/( x (1 + log x))

    Text Solution

    |

  6. Evaluate int tan ^(2) x sec^(4) x dx

    Text Solution

    |

  7. Solve : y - x (dy)/( dx) = 2 (1 + x^(2)"" (dy)/( dx))

    Text Solution

    |

  8. Show that the function f : R to defined by f (x) = x^(3) + 3 is inver...

    Text Solution

    |

  9. Find the probability distribution of the number of green balls drawn w...

    Text Solution

    |

  10. Evaluate : int (sqrt(x^(2) + 1) ( log (x^(2) + 1) - 2 log x))/( x^(4))...

    Text Solution

    |

  11. Evaluate : int (-1) ^(1) e^(x) dx .

    Text Solution

    |

  12. If y = tan ^(-1) (sec x + tan x) , " find " (d^(2) y)/( dx^(2)) at x...

    Text Solution

    |

  13. Find the derivative of tan^(-1) "" (sqrt(1 + x^(2)) - 1)/( x) with res...

    Text Solution

    |

  14. Using properties of determinants, prove that |{:(y + z ,z + x ,x + ...

    Text Solution

    |

  15. Show that the homogenous system of equations x - 2y + z = 0, x + y -...

    Text Solution

    |

  16. Show that semi-vertical angle of a cone of maximum volume and given sl...

    Text Solution

    |

  17. Show that the isosceles triangle of maximum area that can be inscribed...

    Text Solution

    |

  18. Evaluate : int (dx)/( (1 - x^(2)) sqrt( 1 + x^(2)))

    Text Solution

    |

  19. You note that your officer is happy with 60% of your calls, so, you as...

    Text Solution

    |