Home
Class 12
MATHS
Evaluate : int (-1) ^(1) e^(x) dx ....

Evaluate : `int _(-1) ^(1) e^(x) dx` .

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int_{-1}^{1} e^x \, dx\), we will follow these steps: ### Step 1: Identify the integral We need to evaluate the definite integral of \(e^x\) from \(-1\) to \(1\). ### Step 2: Find the antiderivative The antiderivative of \(e^x\) is \(e^x\). So, we can write: \[ \int e^x \, dx = e^x + C \] where \(C\) is the constant of integration. ### Step 3: Apply the limits of integration Now we will apply the limits from \(-1\) to \(1\): \[ \int_{-1}^{1} e^x \, dx = \left[ e^x \right]_{-1}^{1} \] ### Step 4: Evaluate at the upper limit First, we evaluate at the upper limit \(x = 1\): \[ e^1 = e \] ### Step 5: Evaluate at the lower limit Next, we evaluate at the lower limit \(x = -1\): \[ e^{-1} = \frac{1}{e} \] ### Step 6: Subtract the lower limit from the upper limit Now, we subtract the value at the lower limit from the value at the upper limit: \[ \int_{-1}^{1} e^x \, dx = e - \frac{1}{e} \] ### Final Answer Thus, the value of the integral is: \[ e - \frac{1}{e} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - B (In sub-parts (i) and (ii) choose the correct option and in sub-parts (iii) to (v), answer the questions as instructed.) |5 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - B|5 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(1)e^(2x)dx

Evaluate : int _(-1) ^(1) (dx)/( e^(x) + 1) dx

Evaluate : int_(-1)^(2)e^(x) dx as a limit of sum.

Evaluate : int _(1) ^(e) ( dx)/( x (1 + log x))

Evaluate : int(1)/(e^(x)-1)dx

Evaluate: int1\/ sqrt(1-e^(2x))\ dx

Evaluate: int(x+1)/(x\ (1+x\ e^x))\ dx

Evaluate: int((x-1)e^x)/((x+1)^3)dx

Evaluate : int(e^(1//x))/(x^(3)) dx

Evaluate: int(2-x)/((1-x)^2)\ e^x\ dx

ICSE-MODEL TEST PAPER - 7-Section - A
  1. Using L' Hospital' s rule prove that lim(x to (pi)/(2)) (sec x - tan x...

    Text Solution

    |

  2. Show that the function f (x)={ {:(3x^(2) + 12 x - 1,- 1 le x le 2 )...

    Text Solution

    |

  3. Solve : cos ^(-1) x + sin ^(-1) "" (x)/( 2) = (pi)/(6)

    Text Solution

    |

  4. If x^(y) * y^(x) = (x + y) ^(5) , " find " (dy)/( dx)

    Text Solution

    |

  5. Evaluate : int (1) ^(e) ( dx)/( x (1 + log x))

    Text Solution

    |

  6. Evaluate int tan ^(2) x sec^(4) x dx

    Text Solution

    |

  7. Solve : y - x (dy)/( dx) = 2 (1 + x^(2)"" (dy)/( dx))

    Text Solution

    |

  8. Show that the function f : R to defined by f (x) = x^(3) + 3 is inver...

    Text Solution

    |

  9. Find the probability distribution of the number of green balls drawn w...

    Text Solution

    |

  10. Evaluate : int (sqrt(x^(2) + 1) ( log (x^(2) + 1) - 2 log x))/( x^(4))...

    Text Solution

    |

  11. Evaluate : int (-1) ^(1) e^(x) dx .

    Text Solution

    |

  12. If y = tan ^(-1) (sec x + tan x) , " find " (d^(2) y)/( dx^(2)) at x...

    Text Solution

    |

  13. Find the derivative of tan^(-1) "" (sqrt(1 + x^(2)) - 1)/( x) with res...

    Text Solution

    |

  14. Using properties of determinants, prove that |{:(y + z ,z + x ,x + ...

    Text Solution

    |

  15. Show that the homogenous system of equations x - 2y + z = 0, x + y -...

    Text Solution

    |

  16. Show that semi-vertical angle of a cone of maximum volume and given sl...

    Text Solution

    |

  17. Show that the isosceles triangle of maximum area that can be inscribed...

    Text Solution

    |

  18. Evaluate : int (dx)/( (1 - x^(2)) sqrt( 1 + x^(2)))

    Text Solution

    |

  19. You note that your officer is happy with 60% of your calls, so, you as...

    Text Solution

    |