Home
Class 12
MATHS
Find the derivative of tan^(-1) "" (sqrt...

Find the derivative of `tan^(-1) "" (sqrt(1 + x^(2)) - 1)/( x)` with respect to `tan^(-1) ( 2 x sqrt( 1 - x^(2)))/(1 - 2 x ^(2)) ` at x = 0

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \[ y = \tan^{-1}\left(\frac{\sqrt{1 + x^2} - 1}{x}\right) \] with respect to \[ z = \tan^{-1}\left(\frac{2x\sqrt{1 - x^2}}{1 - 2x^2}\right) \] at \( x = 0 \), we will follow these steps: ### Step 1: Differentiate \( y \) with respect to \( x \) Let \[ u = \frac{\sqrt{1 + x^2} - 1}{x} \] Then \[ y = \tan^{-1}(u) \] Using the chain rule, we have: \[ \frac{dy}{dx} = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] Now we need to find \( \frac{du}{dx} \). ### Step 2: Differentiate \( u \) To differentiate \( u \): \[ u = \frac{\sqrt{1 + x^2} - 1}{x} \] Using the quotient rule: \[ \frac{du}{dx} = \frac{x \cdot \frac{d}{dx}(\sqrt{1 + x^2} - 1) - (\sqrt{1 + x^2} - 1) \cdot \frac{d}{dx}(x)}{x^2} \] Calculating \( \frac{d}{dx}(\sqrt{1 + x^2}) \): \[ \frac{d}{dx}(\sqrt{1 + x^2}) = \frac{x}{\sqrt{1 + x^2}} \] Thus, \[ \frac{du}{dx} = \frac{x \cdot \frac{x}{\sqrt{1 + x^2}} - (\sqrt{1 + x^2} - 1)}{x^2} \] Simplifying: \[ \frac{du}{dx} = \frac{x^2/\sqrt{1 + x^2} - \sqrt{1 + x^2} + 1}{x^2} \] ### Step 3: Evaluate \( \frac{du}{dx} \) at \( x = 0 \) At \( x = 0 \): \[ u = \frac{\sqrt{1 + 0^2} - 1}{0} \text{ (indeterminate form)} \] Using L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{\sqrt{1 + x^2} - 1}{x} = \lim_{x \to 0} \frac{\frac{x}{\sqrt{1 + x^2}}}{1} = 0 \] So, \( u(0) = 0 \). Now, substituting \( x = 0 \) into \( \frac{du}{dx} \): \[ \frac{du}{dx} \text{ at } x = 0 = \frac{0 - (1 - 1)}{0} = 0 \] ### Step 4: Differentiate \( z \) with respect to \( x \) Let \[ v = \frac{2x\sqrt{1 - x^2}}{1 - 2x^2} \] Then \[ z = \tan^{-1}(v) \] Using the chain rule: \[ \frac{dz}{dx} = \frac{1}{1 + v^2} \cdot \frac{dv}{dx} \] Now we need to find \( \frac{dv}{dx} \). ### Step 5: Differentiate \( v \) Using the quotient rule: \[ \frac{dv}{dx} = \frac{(1 - 2x^2)(2\sqrt{1 - x^2} + 2x \cdot \frac{-x}{\sqrt{1 - x^2}}) - 2x\sqrt{1 - x^2}(-4x)}{(1 - 2x^2)^2} \] ### Step 6: Evaluate \( \frac{dv}{dx} \) at \( x = 0 \) At \( x = 0 \): \[ v = 0 \quad \text{and} \quad \frac{dv}{dx} \text{ at } x = 0 = 2 \] ### Step 7: Combine results Now we can find the derivative: \[ \frac{dy}{dz} = \frac{\frac{dy}{dx}}{\frac{dz}{dx}} = \frac{\frac{1}{1 + u^2} \cdot \frac{du}{dx}}{\frac{1}{1 + v^2} \cdot \frac{dv}{dx}} \] At \( x = 0 \): \[ \frac{dy}{dx} = \frac{1}{1 + 0^2} \cdot 0 = 0 \] \[ \frac{dz}{dx} = \frac{1}{1 + 0^2} \cdot 2 = 2 \] Thus, \[ \frac{dy}{dz} = \frac{0}{2} = 0 \] ### Final Answer The derivative at \( x = 0 \) is \[ \frac{dy}{dz} = 0 \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - B (In sub-parts (i) and (ii) choose the correct option and in sub-parts (iii) to (v), answer the questions as instructed.) |5 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - B|5 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos

Similar Questions

Explore conceptually related problems

The derivative of tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)((2xsqrt(1-x^2))/(1-2x^2)) at x=0 is 1/8 (b) 1/4 (c) 1/2 (d) 1

The derivative of tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)((2xsqrt(1-x^2))/(1-2x^2)) at x=0 is 1/8 (b) 1/4 (c) 1/2 (d) 1

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x ,x!=0.

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x ,x!=0.

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x , when x!=0.

Find the derivative of tan^(-1)sqrt(x) with respect to x .

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

Differentiate tan^(-1){x/(1+sqrt(1-x^2))},\ -1

ICSE-MODEL TEST PAPER - 7-Section - A
  1. Using L' Hospital' s rule prove that lim(x to (pi)/(2)) (sec x - tan x...

    Text Solution

    |

  2. Show that the function f (x)={ {:(3x^(2) + 12 x - 1,- 1 le x le 2 )...

    Text Solution

    |

  3. Solve : cos ^(-1) x + sin ^(-1) "" (x)/( 2) = (pi)/(6)

    Text Solution

    |

  4. If x^(y) * y^(x) = (x + y) ^(5) , " find " (dy)/( dx)

    Text Solution

    |

  5. Evaluate : int (1) ^(e) ( dx)/( x (1 + log x))

    Text Solution

    |

  6. Evaluate int tan ^(2) x sec^(4) x dx

    Text Solution

    |

  7. Solve : y - x (dy)/( dx) = 2 (1 + x^(2)"" (dy)/( dx))

    Text Solution

    |

  8. Show that the function f : R to defined by f (x) = x^(3) + 3 is inver...

    Text Solution

    |

  9. Find the probability distribution of the number of green balls drawn w...

    Text Solution

    |

  10. Evaluate : int (sqrt(x^(2) + 1) ( log (x^(2) + 1) - 2 log x))/( x^(4))...

    Text Solution

    |

  11. Evaluate : int (-1) ^(1) e^(x) dx .

    Text Solution

    |

  12. If y = tan ^(-1) (sec x + tan x) , " find " (d^(2) y)/( dx^(2)) at x...

    Text Solution

    |

  13. Find the derivative of tan^(-1) "" (sqrt(1 + x^(2)) - 1)/( x) with res...

    Text Solution

    |

  14. Using properties of determinants, prove that |{:(y + z ,z + x ,x + ...

    Text Solution

    |

  15. Show that the homogenous system of equations x - 2y + z = 0, x + y -...

    Text Solution

    |

  16. Show that semi-vertical angle of a cone of maximum volume and given sl...

    Text Solution

    |

  17. Show that the isosceles triangle of maximum area that can be inscribed...

    Text Solution

    |

  18. Evaluate : int (dx)/( (1 - x^(2)) sqrt( 1 + x^(2)))

    Text Solution

    |

  19. You note that your officer is happy with 60% of your calls, so, you as...

    Text Solution

    |