Home
Class 12
MATHS
Evaluate : int (dx)/( (1 - x^(2)) sqrt( ...

Evaluate : `int (dx)/( (1 - x^(2)) sqrt( 1 + x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{dx}{(1 - x^2) \sqrt{1 + x^2}}, \] we will use a trigonometric substitution. Let's go through the steps: ### Step 1: Substitution Let \( x = \sin \theta \). Then, we differentiate to find \( dx \): \[ dx = \cos \theta \, d\theta. \] ### Step 2: Substitute into the Integral Now, substituting \( x \) and \( dx \) into the integral, we have: \[ \int \frac{\cos \theta \, d\theta}{(1 - \sin^2 \theta) \sqrt{1 + \sin^2 \theta}}. \] Using the identity \( 1 - \sin^2 \theta = \cos^2 \theta \), the integral becomes: \[ \int \frac{\cos \theta \, d\theta}{\cos^2 \theta \sqrt{1 + \sin^2 \theta}}. \] ### Step 3: Simplify the Integral Now, simplify the expression: \[ \int \frac{d\theta}{\cos \theta \sqrt{1 + \sin^2 \theta}}. \] Next, we need to simplify \( \sqrt{1 + \sin^2 \theta} \). We know that: \[ 1 + \sin^2 \theta = 1 + \frac{1 - \cos(2\theta)}{2} = \frac{3 + \cos(2\theta)}{2}. \] However, for our purposes, we can leave it as \( \sqrt{1 + \sin^2 \theta} \). ### Step 4: Further Simplification Now, we can express \( \sqrt{1 + \sin^2 \theta} \) in terms of \( \cos \theta \): \[ \sqrt{1 + \sin^2 \theta} = \sqrt{1 + 1 - \cos^2 \theta} = \sqrt{2 - \cos^2 \theta}. \] Thus, our integral is now: \[ \int \frac{d\theta}{\cos \theta \sqrt{1 + \sin^2 \theta}}. \] ### Step 5: Integrate This integral can be evaluated using the known integral: \[ \int \sec \theta \, d\theta = \ln |\sec \theta + \tan \theta| + C. \] Thus, we have: \[ \int \frac{d\theta}{\cos \theta \sqrt{1 + \sin^2 \theta}} = \ln |\sec \theta + \tan \theta| + C. \] ### Step 6: Back Substitute Now we need to substitute back for \( \theta \): Since \( x = \sin \theta \), we have \( \theta = \sin^{-1}(x) \). Therefore: \[ \sec \theta = \frac{1}{\cos \theta} = \frac{1}{\sqrt{1 - \sin^2 \theta}} = \frac{1}{\sqrt{1 - x^2}}, \] and \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{x}{\sqrt{1 - x^2}}. \] Thus, we can write: \[ \sec \theta + \tan \theta = \frac{1}{\sqrt{1 - x^2}} + \frac{x}{\sqrt{1 - x^2}} = \frac{1 + x}{\sqrt{1 - x^2}}. \] ### Final Answer Putting it all together, we have: \[ \int \frac{dx}{(1 - x^2) \sqrt{1 + x^2}} = \ln \left| \frac{1 + x}{\sqrt{1 - x^2}} \right| + C. \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - B (In sub-parts (i) and (ii) choose the correct option and in sub-parts (iii) to (v), answer the questions as instructed.) |5 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - B|5 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(dx)/(sqrt(1-x^2))

Evaluate : int(x^2)/(sqrt(1-x^2))dx

Evaluate int(dx)/(sqrt(1-x^(2))(1+sqrt(1-x^(2)))) .

Evaluate: int(dx)/((2x^(2)+1)sqrt(1-x^(2))

Evaluate: int(x^2)/(sqrt(1-x^2))\ dx

Evaluate: int(x^2)/(sqrt(1-x^2 ))dx

Evaluate: int(x+1)/sqrt (1+x^2)dx

Evaluate: int(dx)/((x+1)sqrt(1+x-x^(2))

Evaluate: int(1+x^2)/(sqrt(1-x^2))\ dx

Evaluate: int(x-1)/sqrt (x^2-1)dx

ICSE-MODEL TEST PAPER - 7-Section - A
  1. Using L' Hospital' s rule prove that lim(x to (pi)/(2)) (sec x - tan x...

    Text Solution

    |

  2. Show that the function f (x)={ {:(3x^(2) + 12 x - 1,- 1 le x le 2 )...

    Text Solution

    |

  3. Solve : cos ^(-1) x + sin ^(-1) "" (x)/( 2) = (pi)/(6)

    Text Solution

    |

  4. If x^(y) * y^(x) = (x + y) ^(5) , " find " (dy)/( dx)

    Text Solution

    |

  5. Evaluate : int (1) ^(e) ( dx)/( x (1 + log x))

    Text Solution

    |

  6. Evaluate int tan ^(2) x sec^(4) x dx

    Text Solution

    |

  7. Solve : y - x (dy)/( dx) = 2 (1 + x^(2)"" (dy)/( dx))

    Text Solution

    |

  8. Show that the function f : R to defined by f (x) = x^(3) + 3 is inver...

    Text Solution

    |

  9. Find the probability distribution of the number of green balls drawn w...

    Text Solution

    |

  10. Evaluate : int (sqrt(x^(2) + 1) ( log (x^(2) + 1) - 2 log x))/( x^(4))...

    Text Solution

    |

  11. Evaluate : int (-1) ^(1) e^(x) dx .

    Text Solution

    |

  12. If y = tan ^(-1) (sec x + tan x) , " find " (d^(2) y)/( dx^(2)) at x...

    Text Solution

    |

  13. Find the derivative of tan^(-1) "" (sqrt(1 + x^(2)) - 1)/( x) with res...

    Text Solution

    |

  14. Using properties of determinants, prove that |{:(y + z ,z + x ,x + ...

    Text Solution

    |

  15. Show that the homogenous system of equations x - 2y + z = 0, x + y -...

    Text Solution

    |

  16. Show that semi-vertical angle of a cone of maximum volume and given sl...

    Text Solution

    |

  17. Show that the isosceles triangle of maximum area that can be inscribed...

    Text Solution

    |

  18. Evaluate : int (dx)/( (1 - x^(2)) sqrt( 1 + x^(2)))

    Text Solution

    |

  19. You note that your officer is happy with 60% of your calls, so, you as...

    Text Solution

    |