Home
Class 12
MATHS
The value of |{:(sin A ,cos A ),(- sin B...

The value of `|{:(sin A ,cos A ),(- sin B, cos B):}|`, when A `= 54^(@) , B = 36^(@)` is a) 0 b) 1 c) -1 d) 2

A

0

B

1

C

`-1`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant of the matrix formed by the vectors \((\sin A, \cos A)\) and \((- \sin B, \cos B)\) when \(A = 54^\circ\) and \(B = 36^\circ\). The determinant of a 2x2 matrix \(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\) is given by the formula: \[ |M| = ad - bc \] In our case, the matrix is: \[ \begin{pmatrix} \sin A & \cos A \\ -\sin B & \cos B \end{pmatrix} \] Substituting \(A = 54^\circ\) and \(B = 36^\circ\), we have: \[ \begin{pmatrix} \sin 54^\circ & \cos 54^\circ \\ -\sin 36^\circ & \cos 36^\circ \end{pmatrix} \] Now, we can calculate the determinant: \[ |M| = (\sin 54^\circ \cdot \cos 36^\circ) - (\cos 54^\circ \cdot (-\sin 36^\circ)) \] This simplifies to: \[ |M| = \sin 54^\circ \cdot \cos 36^\circ + \cos 54^\circ \cdot \sin 36^\circ \] Using the sine addition formula, we recognize that: \[ \sin(A + B) = \sin A \cdot \cos B + \cos A \cdot \sin B \] Thus, we can rewrite our expression as: \[ |M| = \sin(54^\circ + 36^\circ) \] Calculating \(54^\circ + 36^\circ\): \[ 54^\circ + 36^\circ = 90^\circ \] Now, we know that: \[ \sin 90^\circ = 1 \] Therefore, the value of the determinant is: \[ |M| = 1 \] Thus, the answer is: **b) 1**
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - A |19 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - B (In sub-parts (i) and (ii) choose the correct option and In sub-parts (iii) to (v) , answer the questions as instructed )|5 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos
  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos

Similar Questions

Explore conceptually related problems

If A+B+C=pi, then the value of |[sin(A+B+C),sin(A+C),cosC],[-sinB,0,tanC],[cos(A+B),tan(B+C),0]| is equal to (a) 0 (b) 1 (c) 2sinBtanAcosC (d) none of these

The value of cos^2 17^@ - sin^2 73^@ is (a) 1 (b) 1/3 (c) 0 (d) -1

The value of cos ( 35^(@) + A)cos ( 35^(@) - B) + sin ( 35^(@) +A)sin ( 35^(@) - B) is equal to (i) sin(A+ B) (ii) sin(A - B) (iii) cos (A+B) (iv) cos(A-B)

cos (A +B) + sin (A -B) = 2 sin (45 ^(@) + A) cos ( 45 ^(@) + B).

Prove that : (sin A - sin B)/ (cos A + cos B) + (cos A - cos B)/ (sin A + sin B) = 0

If A and B are complementary angles, prove that : (sin A + sin B)/ (sin A - sin B) + (cos B - cos A)/ (cos B + cos A) = (2)/(2 sin^(2) A - 1)

In DeltaABC,if cos A+ sin A -(2)/(cos B + sin B) =0, then (a+b)/c is equal to

If sinA+sin^2A=1, then the value of cos^2A+cos^4A is (a)2 (b) 1 (c) -2 (d) 0

In a triangle ABC , if cos A cos B + sin A sin B sin C = 1 , then a:b:c is equal to

Prove that: (sin A-sin B)/(cos A+cos B)=tan((A-B)/2)