Home
Class 12
MATHS
If y = (cos x - sin x)/( cos x + sin x )...

If y `= (cos x - sin x)/( cos x + sin x ) , "then " (dy)/(dx)`

A

`x^(2)`

B

`y^(2)`

C

`1 + y^(2)`

D

`- (1 + y^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \[ y = \frac{\cos x - \sin x}{\cos x + \sin x}, \] we will use the quotient rule for differentiation. The quotient rule states that if you have a function in the form \(\frac{u}{v}\), then the derivative is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}, \] where \(u = \cos x - \sin x\) and \(v = \cos x + \sin x\). ### Step 1: Identify \(u\) and \(v\) Let: - \(u = \cos x - \sin x\) - \(v = \cos x + \sin x\) ### Step 2: Differentiate \(u\) and \(v\) Now we differentiate \(u\) and \(v\): \[ \frac{du}{dx} = -\sin x - \cos x, \] \[ \frac{dv}{dx} = -\sin x + \cos x. \] ### Step 3: Apply the Quotient Rule Using the quotient rule: \[ \frac{dy}{dx} = \frac{(\cos x + \sin x)(-\sin x - \cos x) - (\cos x - \sin x)(-\sin x + \cos x)}{(\cos x + \sin x)^2}. \] ### Step 4: Simplify the Numerator Now we simplify the numerator: 1. Expand the first term: \[ (\cos x + \sin x)(-\sin x - \cos x) = -\cos x \sin x - \cos^2 x - \sin^2 x - \sin x \cos x = -(\cos^2 x + \sin^2 x + 2\cos x \sin x). \] Since \(\cos^2 x + \sin^2 x = 1\), we have: \[ -(1 + 2\cos x \sin x). \] 2. Expand the second term: \[ (\cos x - \sin x)(-\sin x + \cos x) = -\cos x \sin x + \cos^2 x + \sin^2 x - \sin x \cos x = \cos^2 x + \sin^2 x - 2\cos x \sin x. \] Again, using \(\cos^2 x + \sin^2 x = 1\): \[ 1 - 2\cos x \sin x. \] ### Step 5: Combine the Numerator Now, combine the two results: \[ -(1 + 2\cos x \sin x) - (1 - 2\cos x \sin x) = -1 - 2\cos x \sin x - 1 + 2\cos x \sin x = -2. \] ### Step 6: Write the Final Derivative Thus, the derivative becomes: \[ \frac{dy}{dx} = \frac{-2}{(\cos x + \sin x)^2}. \] ### Final Answer The final answer is: \[ \frac{dy}{dx} = \frac{-2}{(\cos x + \sin x)^2}. \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - A |19 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - B (In sub-parts (i) and (ii) choose the correct option and In sub-parts (iii) to (v) , answer the questions as instructed )|5 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos
  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos

Similar Questions

Explore conceptually related problems

If y = sqrt((cos x - sin x)(sec 2x + 1)(cos x + sin x)) , Then (dy)/(dx) at x = (5 pi)/(6) is :

If y = sqrt((cos x - sin x)(sec 2x + 1)(cos x + sin x)) , Then (dy)/(dx) at x = (5 pi)/(6) is :

If y=x^(sin x), then find (dy)/(dx)

If 2y=(cot^(-1)((sqrt3 cos x + sin x)/(cos x - sqrt3 sin x)))^(2) , x in (0, pi/2) " then " (dy)/(dx) is equal to

If x+y=sin(x+y) then (dy)/(dx)=

(5) If y=sin(x^x) ,then (dy/dx) =

If y = log ( sqrt( sin x - cos x)) , that prove that (dy)/(dx) = - (1)/(2) tan ((pi)/( 4) + x)

If x=a sin t,y=b cos t, then (dy)/(dx)=

int (cos x)/(sin x+cos x) dx

If sin(x y)+cos(x y)=0 , then (dy)/(dx) is