Home
Class 12
MATHS
If tan^(-1) x + tan^(-1) y + tan ^(-1) z...

If `tan^(-1) x + tan^(-1) y + tan ^(-1) z = (pi)/(2)` , then value of xy + yz + zx a) -1 b) 1 c) 0 d) None of these

A

`-1`

B

1

C

0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \frac{\pi}{2} \] ### Step 1: Assign Variables Let: \[ \tan^{-1} x = a, \quad \tan^{-1} y = b, \quad \tan^{-1} z = c \] Thus, we can rewrite the equation as: \[ a + b + c = \frac{\pi}{2} \] ### Step 2: Express x, y, z in terms of a, b, c From the definitions of \(a\), \(b\), and \(c\), we have: \[ x = \tan a, \quad y = \tan b, \quad z = \tan c \] ### Step 3: Use the Identity for Tangent Using the identity for the tangent of a sum, we know: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \] Substituting \(c = \frac{\pi}{2} - (a + b)\), we find: \[ \tan c = \cot(a + b) = \frac{1}{\tan(a + b)} \] ### Step 4: Substitute the Values From our earlier expression, we can express \(\tan c\) as: \[ \tan c = \frac{1}{\frac{\tan a + \tan b}{1 - \tan a \tan b}} = \frac{1 - \tan a \tan b}{\tan a + \tan b} \] Substituting \(x\), \(y\), and \(z\): \[ z = \frac{1 - xy}{x + y} \] ### Step 5: Multiply through by \(x + y\) Now, we multiply both sides by \(x + y\): \[ z(x + y) = 1 - xy \] ### Step 6: Rearranging the Equation Rearranging gives us: \[ xy + yz + zx = 1 \] ### Conclusion Thus, the value of \(xy + yz + zx\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - A |19 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - B (In sub-parts (i) and (ii) choose the correct option and In sub-parts (iii) to (v) , answer the questions as instructed )|5 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos
  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If tan^(-1) x+tan^(-1)y+tan^(-1)z=pi/2 then prove that yz+zx+xy=1

If tan^(-1)x+tan^(-1)y=pi/4, then write the value of x+y+x ydot

If tan^(-1)x+tan^(-1)y=pi/4, then write the value of x+y+x ydot

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi , then 1/(xy)+1/(yz)+1/(zx)=

If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z =

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

If tan^(-1) a+tan^(-1) b +tan^(-1)c=pi , prove that a+b+c=abc.

If tan^(-1) ((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7) , then the value of x is (a) 0 (b) -2 (c) 1 (d) 2