Home
Class 12
MATHS
A = ({:(1),(2),(3):}),"find " A * A^(T)...

`A = ({:(1),(2),(3):}),"find " A * A^(T)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \( A \times A^T \) where \( A = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \), we will follow these steps: ### Step 1: Write down the matrix \( A \) Given: \[ A = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \] ### Step 2: Find the transpose of matrix \( A \) The transpose of a matrix is obtained by converting its rows into columns. Therefore, the transpose \( A^T \) is: \[ A^T = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \] ### Step 3: Multiply \( A \) and \( A^T \) Now we need to multiply \( A \) (which is a \( 3 \times 1 \) matrix) with \( A^T \) (which is a \( 1 \times 3 \) matrix). The result will be a \( 3 \times 3 \) matrix. The multiplication is performed as follows: \[ A \times A^T = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \times \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \] Calculating each element of the resulting matrix: - First row: - \( 1 \times 1 = 1 \) - \( 1 \times 2 = 2 \) - \( 1 \times 3 = 3 \) - Second row: - \( 2 \times 1 = 2 \) - \( 2 \times 2 = 4 \) - \( 2 \times 3 = 6 \) - Third row: - \( 3 \times 1 = 3 \) - \( 3 \times 2 = 6 \) - \( 3 \times 3 = 9 \) Putting it all together, we get: \[ A \times A^T = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix} \] ### Final Answer Thus, the result of \( A \times A^T \) is: \[ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - A |19 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - B (In sub-parts (i) and (ii) choose the correct option and In sub-parts (iii) to (v) , answer the questions as instructed )|5 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos
  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos

Similar Questions

Explore conceptually related problems

If A=[(1, 2 ),(3, 4)] , find A+A^T .

If {:[(x-2,y-3),(z+1,t-4)]:}={:[(1,4),(2,3)]:} then find x,y,z and t.

If A=[{:(,2,1,-1),(,0,1,-2):}] find: (i) A^(t).A (ii) A.A^(t) where A^t is the transpose of matrix A.

If y = cos^(-1) ((1)/( sqrt(1+t^(2)))), x = sin^(-1) (sqrt((t^(2))/(1 + t^(2)))), "find " (dy)/(dx)

If A is a non-singular square matrix such that A^(-1)=[(5, 3),(-2,-1)] , then find (A^T)^(-1) .

If matrix A=[{:(,2,1,3),(,4,-3,2):}] and B=[{:(,3,-2),(,7,4):}] , find transpose matrices A^t and B^t . If possible, find (i) A+A^t (ii) B+B^t

"If "x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then find "(dy)/(dx)" at "t=2.

Find the sum of first 24 terms of on AP t_(1),t_(2),t_(3),"....", if it is known that t_(1) + t_(5) + t_(10) + t_(15) + t_(20) + t_(24)=225.

If a circle and the rectangular hyperbola xy = c^(2) meet in four points 't'_(1) , 't'_(2) , 't'_(3) " and " 't'_(4) then prove that t_(1) t_(2) t_(3) t_(4) = 1 .

Given A=[{:(,-3,6),(,0,-9):}] and A^t is it transpose matrix. Find : (i) 2A+3A^(t) (ii) 2A^(t)-3A