Home
Class 12
MATHS
If vec(a) = hat(i) - 2 hat(j) + 3 hat(k...

If ` vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k)` , then angle between `vec(a) and vec(b)` is

A

`(pi)/(2)`

B

`(pi)/(2)`

C

`(pi)/(6)`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \( \vec{a} \) and \( \vec{b} \), we will use the formula for the cosine of the angle between two vectors: \[ \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} \] ### Step 1: Identify the vectors Given: \[ \vec{a} = \hat{i} - 2\hat{j} + 3\hat{k} \] \[ \vec{b} = 2\hat{i} - 3\hat{j} + 5\hat{k} \] ### Step 2: Calculate the dot product \( \vec{a} \cdot \vec{b} \) The dot product is calculated as follows: \[ \vec{a} \cdot \vec{b} = (1)(2) + (-2)(-3) + (3)(5) \] Calculating each term: - \( 1 \cdot 2 = 2 \) - \( -2 \cdot -3 = 6 \) - \( 3 \cdot 5 = 15 \) Adding these results: \[ \vec{a} \cdot \vec{b} = 2 + 6 + 15 = 23 \] ### Step 3: Calculate the magnitudes \( |\vec{a}| \) and \( |\vec{b}| \) The magnitude of \( \vec{a} \) is calculated as follows: \[ |\vec{a}| = \sqrt{1^2 + (-2)^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14} \] The magnitude of \( \vec{b} \) is calculated as follows: \[ |\vec{b}| = \sqrt{2^2 + (-3)^2 + 5^2} = \sqrt{4 + 9 + 25} = \sqrt{38} \] ### Step 4: Substitute into the cosine formula Now we can substitute the dot product and magnitudes into the cosine formula: \[ \cos \theta = \frac{23}{|\vec{a}| |\vec{b}|} = \frac{23}{\sqrt{14} \cdot \sqrt{38}} \] ### Step 5: Calculate \( \sqrt{14} \cdot \sqrt{38} \) Calculating the product: \[ \sqrt{14} \cdot \sqrt{38} = \sqrt{14 \cdot 38} = \sqrt{532} \] ### Step 6: Calculate \( \cos \theta \) Thus, we have: \[ \cos \theta = \frac{23}{\sqrt{532}} \] ### Step 7: Find the angle \( \theta \) To find \( \theta \), we take the inverse cosine: \[ \theta = \cos^{-1}\left(\frac{23}{\sqrt{532}}\right) \] ### Final Result Using a calculator to find the angle: \[ \theta \approx \cos^{-1}(0.99) \approx 8.1^\circ \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - B|5 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C (In sub-parts (i) and (ii) choose the correct option and In sub-parts (iii) to (v) , answer the questions as instructed )|5 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - A |19 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos
  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos

Similar Questions

Explore conceptually related problems

If vec(A) = 5 hat(i) - 3 hat(j) + 4 hat(k) and vec(B) = hat(j) - hat(k) , find the sine of the angle between vec(a) and vec(B)

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

If vec(a) = 2 hat(i) - hat(j) + hat(k) and vec(b) = hat(i) - 2 hat(j) + hat(k) then projection of vec(b)' on ' vec(a) is

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

If vec(A) = 4hat(i) - 2hat(j) + 6hat(k) and B = hat(i) - 2hat(j) - 3hat(k) the angle which the vec(A) vec(B) makes with x-axis is :

vec(A)=(hat(i)-2hat(j)+6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) , find the cross product between vec(A) and vec(B) .

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

If vec( a) = hat(i) + hat(j) + p hat(k) and vec( b) = vec( i) + hat(j) + hat(k) then | vec( a) + hat(b) | = | vec( a) |+ | vec( b)| holds for

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :