Home
Class 12
MATHS
Find the volume of the parallelopiped wh...

Find the volume of the parallelopiped whose edges are represented by `vec(a) = 2 hat(i) - 3 hat(j) + 4 hat(k) , vec(b) = hat(i) + 2 hat(j) - hat(k), vec(c) = 3 hat(i) - hat(j) + 2 hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of the parallelepiped whose edges are represented by the vectors \(\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}\), \(\vec{b} = \hat{i} + 2\hat{j} - \hat{k}\), and \(\vec{c} = 3\hat{i} - \hat{j} + 2\hat{k}\), we can use the formula for the volume of a parallelepiped formed by three vectors, which is given by the absolute value of the scalar triple product of the vectors. This can be calculated using the determinant of a 3x3 matrix formed by the components of the vectors. ### Step-by-Step Solution: 1. **Write the vectors in component form:** \[ \vec{a} = \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} \] 2. **Set up the determinant:** The volume \(V\) of the parallelepiped can be calculated as: \[ V = |\vec{a} \cdot (\vec{b} \times \vec{c})| = \left| \begin{vmatrix} 2 & -3 & 4 \\ 1 & 2 & -1 \\ 3 & -1 & 2 \end{vmatrix} \right| \] 3. **Calculate the determinant:** We can calculate the determinant using the formula for a 3x3 matrix: \[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a(ei - fh) - b(di - fg) + c(dh - eg) \] Applying this to our matrix: \[ = 2 \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} - (-3) \begin{vmatrix} 1 & -1 \\ 3 & 2 \end{vmatrix} + 4 \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} \] 4. **Calculate the 2x2 determinants:** - For the first determinant: \[ \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} = (2)(2) - (-1)(-1) = 4 - 1 = 3 \] - For the second determinant: \[ \begin{vmatrix} 1 & -1 \\ 3 & 2 \end{vmatrix} = (1)(2) - (-1)(3) = 2 + 3 = 5 \] - For the third determinant: \[ \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} = (1)(-1) - (2)(3) = -1 - 6 = -7 \] 5. **Substitute back into the determinant calculation:** \[ = 2(3) + 3(5) + 4(-7) = 6 + 15 - 28 = 21 - 28 = -7 \] 6. **Find the volume:** The volume is the absolute value of the determinant: \[ V = |-7| = 7 \] ### Final Answer: The volume of the parallelepiped is \(7\) cubic units.
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - B|5 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C (In sub-parts (i) and (ii) choose the correct option and In sub-parts (iii) to (v) , answer the questions as instructed )|5 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - A |19 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos
  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos

Similar Questions

Explore conceptually related problems

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors: i, vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j+2 hat k ii, vec a=2 hat i-3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j-2 hat k iii, vec a=11 hat i , vec b=2 hat j , vec c=13 hat k iv, vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j- hat k

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=2 hat i-3 hat j+4 hat k ,\ vec b= hat i+2 hat j- hat k ,\ vec c=3 hat i- hat j-2 hat k .

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=2 hat i+3 hat j+4 hat k ,\ vec b= hat i+2 hat j- hat k ,\ vec c=3 hat i- hat j+2 hat k .

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a= hat i+ hat j+ hat k ,\ vec b= hat i- hat j+ hat k ,\ vec c= hat i+2 hat j- hat k .

Find the projection of vec(b)+ vec(c ) on vec(a) where vec(a)= 2 hat(i) -2hat(j) + hat(k), vec(b)= hat(i) + 2hat(j)- 2hat(k), vec(c ) = 2hat(i) - hat(j) + 4hat(k)

If vec(a) = 2 hat(i) - hat(j) + hat(k) and vec(b) = hat(i) - 2 hat(j) + hat(k) then projection of vec(b)' on ' vec(a) is

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is