Home
Class 11
MATHS
Simplify: sqrt(-20) + sqrt(-12)...

Simplify:
`sqrt(-20) + sqrt(-12)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \sqrt{-20} + \sqrt{-12} \), we can follow these steps: ### Step 1: Rewrite the square roots using imaginary unit \( i \) We know that \( \sqrt{-1} = i \). Therefore, we can rewrite the square roots of negative numbers as follows: \[ \sqrt{-20} = \sqrt{20} \cdot \sqrt{-1} = \sqrt{20} \cdot i \] \[ \sqrt{-12} = \sqrt{12} \cdot \sqrt{-1} = \sqrt{12} \cdot i \] ### Step 2: Simplify the square roots Next, we simplify \( \sqrt{20} \) and \( \sqrt{12} \): \[ \sqrt{20} = \sqrt{4 \cdot 5} = \sqrt{4} \cdot \sqrt{5} = 2\sqrt{5} \] \[ \sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{3} = 2\sqrt{3} \] ### Step 3: Substitute back into the expression Now we can substitute these simplified forms back into the expression: \[ \sqrt{-20} + \sqrt{-12} = 2\sqrt{5} \cdot i + 2\sqrt{3} \cdot i \] ### Step 4: Factor out the common term We can factor out the common term \( 2i \): \[ 2\sqrt{5} \cdot i + 2\sqrt{3} \cdot i = 2i(\sqrt{5} + \sqrt{3}) \] ### Final Answer Thus, the simplified form of \( \sqrt{-20} + \sqrt{-12} \) is: \[ \boxed{2i(\sqrt{5} + \sqrt{3})} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (C)|21 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

Simplify: sqrt(-4) + sqrt(-16)- sqrt(-25)

Simplify: (sqrt(-2))/(sqrt(-8))

Simplify: (sqrt(5+12 i)+sqrt(5-12 i))/(sqrt(5+12 i)-sqrt(5-12 i))

Simplify: (i) (3sqrt(2)-2sqrt(2))/(3sqrt(2)+\ 2sqrt(3))+(sqrt(12))/(sqrt(3)-\ sqrt(2)) (ii) (sqrt(5)+\ sqrt(3))/(sqrt(5)-\ sqrt(3))+(sqrt(5)-\ sqrt(3))/(sqrt(5)+\ sqrt(3))

Simplify: -sqrt((-7)/(4))-sqrt((-1)/(7))

Simplify: (sqrt(5)-2)/(sqrt(5)+2)-(sqrt(5)+\ 2)/(sqrt(5)-\ 2)

Simplify sqrt(-16)xxsqrt(-25) .

Simplify: sqrt(3-2sqrt(2))

Simplify: (3+sqrt 3)(3-sqrt3)

Simplify : 3sqrt(-16)-2sqrt(-9)+4sqrt(-36)