Home
Class 11
MATHS
Simplify: -sqrt((-7)/(4))-sqrt((-1)/(...

Simplify:
`-sqrt((-7)/(4))-sqrt((-1)/(7))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(-\sqrt{\left(-\frac{7}{4}\right)} - \sqrt{\left(-\frac{1}{7}\right)}\), we can follow these steps: ### Step 1: Rewrite the square roots We know that \(\sqrt{-x} = i\sqrt{x}\), where \(i\) is the imaginary unit. Therefore, we can rewrite the expression as: \[ -\sqrt{\left(-\frac{7}{4}\right)} - \sqrt{\left(-\frac{1}{7}\right)} = -i\sqrt{\frac{7}{4}} - i\sqrt{\frac{1}{7}} \] ### Step 2: Simplify the square roots Now, we simplify the square roots: \[ -i\sqrt{\frac{7}{4}} = -i\frac{\sqrt{7}}{2} \quad \text{and} \quad -i\sqrt{\frac{1}{7}} = -i\frac{1}{\sqrt{7}} \] Thus, we have: \[ -i\frac{\sqrt{7}}{2} - i\frac{1}{\sqrt{7}} \] ### Step 3: Combine the terms Now we can factor out \(-i\): \[ -i\left(\frac{\sqrt{7}}{2} + \frac{1}{\sqrt{7}}\right) \] ### Step 4: Find a common denominator To combine the terms inside the parentheses, we need a common denominator. The common denominator for \(2\) and \(\sqrt{7}\) is \(2\sqrt{7}\): \[ \frac{\sqrt{7}}{2} = \frac{\sqrt{7} \cdot \sqrt{7}}{2\sqrt{7}} = \frac{7}{2\sqrt{7}} \] \[ \frac{1}{\sqrt{7}} = \frac{2}{2\sqrt{7}} \] Now we can add these fractions: \[ \frac{7}{2\sqrt{7}} + \frac{2}{2\sqrt{7}} = \frac{7 + 2}{2\sqrt{7}} = \frac{9}{2\sqrt{7}} \] ### Step 5: Substitute back Now substitute this back into our expression: \[ -i\left(\frac{9}{2\sqrt{7}}\right) \] This simplifies to: \[ -\frac{9i}{2\sqrt{7}} \] ### Step 6: Rationalize the denominator To rationalize the denominator, we multiply the numerator and denominator by \(\sqrt{7}\): \[ -\frac{9i\sqrt{7}}{2 \cdot 7} = -\frac{9i\sqrt{7}}{14} \] ### Final Answer Thus, the simplified form of the expression is: \[ -\frac{9i\sqrt{7}}{14} \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (C)|21 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

Simplify : 7sqrt((1)/(3)) -2(1)/(3) sqrt((1)/(3)) +3 sqrt( 147)

Simplify: sqrt(-4) + sqrt(-16)- sqrt(-25)

Simplify: (4+\ sqrt(5))/(4-sqrt(5))+(4-\ sqrt(5))/(4+\ sqrt(5))

Simplify : 3sqrt(-16)-2sqrt(-9)+4sqrt(-36)

Simplify (5+sqrt(7))(5+sqrt(2))

Simplify: (i) (7+3\ sqrt(5))/(3+\ sqrt(5))-(7-3\ sqrt(5))/(3-\ sqrt(5)) (ii) 1/(2+sqrt(3)\ )+2/(sqrt(5)-\ sqrt(3))+1/(2-\ sqrt(5))

Simplify the following (3+sqrt(2))(4+sqrt(7))

Simplify : (7)/(sqrt(17) - 2sqrt3)-( 3)/(sqrt(17) +2sqrt3)

Rationales the denominator and simplify: (i) (sqrt(3)-\ sqrt(2))/(sqrt(3)\ +\ sqrt(2)) (ii) (5+2\ sqrt(3))/(7+4\ sqrt(3))

Simplify : (1)/(sqrt(3)+sqrt(2))-(1)/(sqrt(3)-sqrt(2))+(2)/(sqrt(2)+1)