Home
Class 11
MATHS
Simplify: (sqrt(-2))/(sqrt(-8))...

Simplify:
`(sqrt(-2))/(sqrt(-8))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((\sqrt{-2})/(\sqrt{-8})\), we can follow these steps: ### Step 1: Rewrite the square roots of negative numbers We know that \(\sqrt{-1} = i\), where \(i\) is the imaginary unit. Therefore, we can express the square roots of negative numbers as follows: \[ \sqrt{-2} = \sqrt{-1} \cdot \sqrt{2} = i\sqrt{2} \] \[ \sqrt{-8} = \sqrt{-1} \cdot \sqrt{8} = i\sqrt{8} \] ### Step 2: Simplify \(\sqrt{8}\) We can simplify \(\sqrt{8}\) as: \[ \sqrt{8} = \sqrt{4 \cdot 2} = \sqrt{4} \cdot \sqrt{2} = 2\sqrt{2} \] Thus, we have: \[ \sqrt{-8} = i \cdot 2\sqrt{2} = 2i\sqrt{2} \] ### Step 3: Substitute back into the expression Now, we can substitute these results back into the original expression: \[ \frac{\sqrt{-2}}{\sqrt{-8}} = \frac{i\sqrt{2}}{2i\sqrt{2}} \] ### Step 4: Simplify the fraction Now, we can simplify the fraction: \[ \frac{i\sqrt{2}}{2i\sqrt{2}} = \frac{1}{2} \] Here, \(i\) and \(\sqrt{2}\) in the numerator and denominator cancel out. ### Final Answer Thus, the simplified form of \((\sqrt{-2})/(\sqrt{-8})\) is: \[ \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (C)|21 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

Simplify: (sqrt(5)-2)/(sqrt(5)+2)-(sqrt(5)+\ 2)/(sqrt(5)-\ 2)

Simplify : (sqrt(2))/(sqrt(6)-sqrt(2))- (sqrt(3))/(sqrt(6)+sqrt(2))

Simplify: sqrt(-20) + sqrt(-12)

Simplify: (4+\ sqrt(5))/(4-sqrt(5))+(4-\ sqrt(5))/(4+\ sqrt(5))

Simplify (sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) e

Simplify (5+sqrt(7))(5+sqrt(2))

Simplify: (2sqrt(3)-sqrt(2))/(2sqrt(3)+sqrt(2))

Rationales the denominator and simplify: (sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))

Simplify: -sqrt((-7)/(4))-sqrt((-1)/(7))

Simplify: (i) (3sqrt(2)-2sqrt(2))/(3sqrt(2)+\ 2sqrt(3))+(sqrt(12))/(sqrt(3)-\ sqrt(2)) (ii) (sqrt(5)+\ sqrt(3))/(sqrt(5)-\ sqrt(3))+(sqrt(5)-\ sqrt(3))/(sqrt(5)+\ sqrt(3))