Home
Class 11
MATHS
Simplify: (1)/(i) + (1)/(i^(2)) + (1)...

Simplify:
`(1)/(i) + (1)/(i^(2)) + (1)/(i^(3)) + (1)/(i^(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \frac{1}{i} + \frac{1}{i^2} + \frac{1}{i^3} + \frac{1}{i^4} \), we will follow these steps: ### Step 1: Evaluate each term First, we need to evaluate each term in the expression using the powers of \( i \) (where \( i = \sqrt{-1} \)): - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = i^2 \cdot i = -1 \cdot i = -i \) - \( i^4 = (i^2)^2 = (-1)^2 = 1 \) ### Step 2: Substitute the values into the expression Now we can substitute these values back into the expression: \[ \frac{1}{i} + \frac{1}{-1} + \frac{1}{-i} + \frac{1}{1} \] This simplifies to: \[ \frac{1}{i} - 1 - \frac{1}{i} + 1 \] ### Step 3: Combine like terms Next, we can combine like terms: - The \( -1 \) and \( +1 \) cancel each other out: \[ \frac{1}{i} - \frac{1}{i} = 0 \] ### Step 4: Final result Thus, the final result of the expression is: \[ 0 \] ### Summary of the solution The simplified expression is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (C)|21 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

Simplify: (i) (1)^5 (ii) (-1)^5

Simplify: (i) (-1)^6 (ii) (-1)^7

Simplify: ((-1)/(2)- (sqrt3)/(2)i)^(2)

Simiplify : ((1-i)^(3))/((1-i^(3))

Simplify: [i^(18) + ((1)/(i))^(25)]^(3)

Simplify: ((1+i)/(1-i))^200

Simplify : (1+2i)/(1-2i)-(1-2i)/(1+2i)

The imaginary number I is defined such that i^(2)=-1 . Which of the following options is equivalent to ((1)/(i)+(1)/(i^2)+(1)/(i^3)+(1)/(i^4)) ?

Simplify: (9+4i) ((3)/(2)-i) (9-4i)

Simplify (1-i root 3)/(2+2i)