Home
Class 11
MATHS
Simplify: i+ 2i^(2) + 3i^(3) + i^(4)...

Simplify:
`i+ 2i^(2) + 3i^(3) + i^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( i + 2i^2 + 3i^3 + i^4 \), we will follow these steps: ### Step 1: Identify the powers of \( i \) We know the following properties of the imaginary unit \( i \): - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) ### Step 2: Substitute the powers of \( i \) into the expression Using the properties identified, we can substitute the powers of \( i \) in the expression: \[ i + 2i^2 + 3i^3 + i^4 = i + 2(-1) + 3(-i) + 1 \] ### Step 3: Simplify the expression Now, we simplify each term: \[ = i - 2 - 3i + 1 \] ### Step 4: Combine like terms Next, we combine the real parts and the imaginary parts: - Real parts: \( -2 + 1 = -1 \) - Imaginary parts: \( i - 3i = -2i \) Putting it all together, we have: \[ -1 - 2i \] ### Final Answer Thus, the simplified expression is: \[ \boxed{-1 - 2i} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (C)|21 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

Simplify: (3-7i)^(2)

Simplify: ( 14+2i)(7+12i)

The value of i + i^(2) + i^(3) + i^(4) is ________

Simplify: i ^2+i ^3+i ^4+i ^5

Simplify: (1)/(i) + (1)/(i^(2)) + (1)/(i^(3)) + (1)/(i^(4))

Simplify: (1)/(i)- (1)/(i^(2)) + (1)/(i^(3)) - (1)/(i^(4))

Simplify: [i^(18) + ((1)/(i))^(25)]^(3)

Simplify the following : (i) 1+ i^(5)+i^(10)+i^(15) (ii) (1+i)^(4)+(1+(1)/(i))^(4) (iii) i^(n)+i^(n+1)+i^(n+2)+i^(n+3)

Simplify: (i)\ (32)^(-3/5) (ii)\ (343)^(-2/3)

Simplify: (i)\ ((25)^(3/2)\ xx\ (243)^(3/5))/((16)^(5/4)\ xx\ (8)^(4/3))