Home
Class 11
MATHS
Simplify: [i^(18) + ((1)/(i))^(25)]^(...

Simplify:
`[i^(18) + ((1)/(i))^(25)]^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \([i^{18} + \left(\frac{1}{i}\right)^{25}]^{3}\), we will follow these steps: ### Step 1: Simplify \(i^{18}\) We know that the powers of \(i\) (the imaginary unit) cycle every 4: - \(i^1 = i\) - \(i^2 = -1\) - \(i^3 = -i\) - \(i^4 = 1\) To find \(i^{18}\), we can reduce the exponent modulo 4: \[ 18 \mod 4 = 2 \] Thus, \[ i^{18} = i^2 = -1 \] ### Step 2: Simplify \(\left(\frac{1}{i}\right)^{25}\) We can rewrite \(\frac{1}{i}\) as \(-i\) (since \(\frac{1}{i} = \frac{i}{i^2} = \frac{i}{-1} = -i\)). Therefore, we need to calculate: \[ (-i)^{25} \] Again, we reduce the exponent modulo 4: \[ 25 \mod 4 = 1 \] Thus, \[ (-i)^{25} = (-i)^1 = -i \] ### Step 3: Combine the results Now we can combine the results from Step 1 and Step 2: \[ i^{18} + \left(\frac{1}{i}\right)^{25} = -1 + (-i) = -1 - i \] ### Step 4: Raise the result to the power of 3 Now we need to raise \(-1 - i\) to the power of 3: \[ (-1 - i)^3 \] Using the binomial theorem or the formula \((a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3\): Let \(a = -1\) and \(b = -i\): \[ (-1 - i)^3 = (-1)^3 + 3(-1)^2(-i) + 3(-1)(-i)^2 + (-i)^3 \] Calculating each term: - \((-1)^3 = -1\) - \(3(-1)^2(-i) = 3(1)(-i) = -3i\) - \(3(-1)(-i)^2 = 3(-1)(-1) = 3\) - \((-i)^3 = -i^3 = -(-i) = i\) Combining these results: \[ (-1 - i)^3 = -1 - 3i + 3 + i = 2 - 2i \] ### Final Answer Thus, the simplified expression is: \[ \boxed{2(1 - i)} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (C)|21 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

Evaluate: [i^(18) + ((1)/(i))^(25)]^(3)

Simplify : i^(15)

Simplify : i^(38)

Simplify : i^(-6)

Simplify: i^(13)

Simplify: i^(28)

Simplify: i^(23)

Simplify: (3-7i)^(2)

Evaluate : [i^(18)+(1/i)^(25)]^3

Simplify : (1)/(i)