Home
Class 11
MATHS
sqrt((-x)/(4)) + sqrt((-x)/(16))- sqrt((...

`sqrt((-x)/(4)) + sqrt((-x)/(16))- sqrt((-x)/(64))`, where x is a positive real number

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{\frac{-x}{4}} + \sqrt{\frac{-x}{16}} - \sqrt{\frac{-x}{64}} \), where \( x \) is a positive real number, we can follow these steps: ### Step 1: Rewrite the square roots We start by rewriting each term in the expression using the property of square roots: \[ \sqrt{\frac{-x}{4}} = \frac{\sqrt{-x}}{\sqrt{4}} = \frac{\sqrt{-x}}{2} \] \[ \sqrt{\frac{-x}{16}} = \frac{\sqrt{-x}}{\sqrt{16}} = \frac{\sqrt{-x}}{4} \] \[ \sqrt{\frac{-x}{64}} = \frac{\sqrt{-x}}{\sqrt{64}} = \frac{\sqrt{-x}}{8} \] ### Step 2: Substitute back into the expression Now we substitute these back into the original expression: \[ \frac{\sqrt{-x}}{2} + \frac{\sqrt{-x}}{4} - \frac{\sqrt{-x}}{8} \] ### Step 3: Find a common denominator The common denominator for \( 2, 4, \) and \( 8 \) is \( 8 \). We can rewrite each term with this common denominator: \[ \frac{4\sqrt{-x}}{8} + \frac{2\sqrt{-x}}{8} - \frac{\sqrt{-x}}{8} \] ### Step 4: Combine the terms Now we can combine the fractions: \[ \frac{4\sqrt{-x} + 2\sqrt{-x} - \sqrt{-x}}{8} = \frac{(4 + 2 - 1)\sqrt{-x}}{8} = \frac{5\sqrt{-x}}{8} \] ### Step 5: Express \(\sqrt{-x}\) in terms of \(i\) Since \( x \) is a positive real number, \( -x \) is negative. We can express \( \sqrt{-x} \) as: \[ \sqrt{-x} = \sqrt{x} \cdot \sqrt{-1} = \sqrt{x} \cdot i \] ### Step 6: Substitute back into the expression Substituting this into our expression gives: \[ \frac{5\sqrt{-x}}{8} = \frac{5\sqrt{x} \cdot i}{8} \] ### Final Answer Thus, the final simplified form of the expression is: \[ \frac{5\sqrt{x} \cdot i}{8} \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (C)|21 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

sqrt(-5x^(8))- sqrt(-20x^(8)) + sqrt(-45x^(8)) , where x is a positive real number

int(sqrt(2+x^(2))-sqrt(2-x^(2)))/(sqrt(4-x^(4)))dx

If sqrt(x+3)+sqrt(7-x)=4 , what is the positive value of x^(3) ?

If int(x-1)/((x+x sqrt(x)+sqrt(x))+sqrt(sqrt(x)(x+1)))dx=4tan^(-1)(g(x))+c where c is constant of integration, then g^(2)(1)=

Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1

Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1

Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1

Find the domain of f(x)=sqrt(([x]-1))+sqrt((4-[x])) (where [ ] represents the greatest integer function).

int_(a//4)^(3a//4)sqrt(x)/(sqrt(a-x)+sqrt(x))\ dx=a/4

lim_(x->oo)(sqrt(x+sqrt(x))-sqrt(x)) equals