Home
Class 11
MATHS
sqrt(-5x^(8))- sqrt(-20x^(8)) + sqrt(-45...

`sqrt(-5x^(8))- sqrt(-20x^(8)) + sqrt(-45x^(8))`, where x is a positive real number

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{-5x^8} - \sqrt{-20x^8} + \sqrt{-45x^8} \), where \( x \) is a positive real number, we will follow these steps: ### Step 1: Identify the square roots of negative numbers We know that \( \sqrt{-a} = i\sqrt{a} \), where \( i = \sqrt{-1} \). Thus, we can rewrite each term in the expression: \[ \sqrt{-5x^8} = i\sqrt{5x^8} \] \[ \sqrt{-20x^8} = i\sqrt{20x^8} \] \[ \sqrt{-45x^8} = i\sqrt{45x^8} \] ### Step 2: Simplify each square root Next, we simplify each square root: 1. \( \sqrt{5x^8} = \sqrt{5} \cdot \sqrt{x^8} = \sqrt{5} \cdot x^4 \) 2. \( \sqrt{20x^8} = \sqrt{20} \cdot \sqrt{x^8} = \sqrt{20} \cdot x^4 = \sqrt{4 \cdot 5} \cdot x^4 = 2\sqrt{5} \cdot x^4 \) 3. \( \sqrt{45x^8} = \sqrt{45} \cdot \sqrt{x^8} = \sqrt{45} \cdot x^4 = \sqrt{9 \cdot 5} \cdot x^4 = 3\sqrt{5} \cdot x^4 \) ### Step 3: Substitute back into the expression Now we can substitute these simplified terms back into the original expression: \[ i(\sqrt{5} \cdot x^4) - i(2\sqrt{5} \cdot x^4) + i(3\sqrt{5} \cdot x^4) \] ### Step 4: Factor out common terms We can factor out \( i \cdot x^4 \): \[ i x^4 \left( \sqrt{5} - 2\sqrt{5} + 3\sqrt{5} \right) \] ### Step 5: Simplify the expression inside the parentheses Now we simplify the expression inside the parentheses: \[ \sqrt{5} - 2\sqrt{5} + 3\sqrt{5} = (1 - 2 + 3)\sqrt{5} = 2\sqrt{5} \] ### Step 6: Final expression Putting it all together, we have: \[ i x^4 \cdot 2\sqrt{5} = 2\sqrt{5} x^4 i \] Thus, the final simplified form of the expression is: \[ \boxed{2\sqrt{5} x^4 i} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (C)|21 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

sqrt((-x)/(4)) + sqrt((-x)/(16))- sqrt((-x)/(64)) , where x is a positive real number

(x^(3))/(sqrt(1-x^(8)))

sqrt(x+5)+sqrt(20-x)=7

If (7+4sqrt(3))^(x^(2-8))+(7-4sqrt(3))^(x^(2-8))=14, then x=

lim_(x->1)sqrt(x+8)/sqrtx

intx^3/sqrt(1+x^8)dx

4 int (sqrt(a^(6)+x^(8)))/(x) dx is equal to

Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1

Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1

Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1