Home
Class 10
MATHS
Given [{:(,x,y+2),(,3,z-1):}] =[{:(,3,1)...

Given `[{:(,x,y+2),(,3,z-1):}] =[{:(,3,1),(,3,2):}]` find x,y and z.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given by the matrices \(\begin{pmatrix} x & y + 2 \\ 3 & z - 1 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 3 & 2 \end{pmatrix}\), we will equate the corresponding elements of the two matrices. ### Step-by-step Solution: 1. **Equate the first elements:** \[ x = 3 \] 2. **Equate the second elements of the first row:** \[ y + 2 = 1 \] To solve for \(y\), subtract 2 from both sides: \[ y = 1 - 2 = -1 \] 3. **Equate the first element of the second row:** \[ 3 = 3 \] This equation is always true and does not provide any new information. 4. **Equate the second elements of the second row:** \[ z - 1 = 2 \] To solve for \(z\), add 1 to both sides: \[ z = 2 + 1 = 3 \] ### Final Values: Thus, we have: - \(x = 3\) - \(y = -1\) - \(z = 3\) ### Summary: The values are: - \(x = 3\) - \(y = -1\) - \(z = 3\)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9B|11 Videos
  • MATRICES

    ICSE|Exercise Exercise 9C|38 Videos
  • MATRICES

    ICSE|Exercise Exercise 9D|25 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

If {:[(x-2,y-3),(z+1,t-4)]:}={:[(1,4),(2,3)]:} then find x,y,z and t.

If 2[{:(,3,x),(,0,1):}]+3[{:(,1,3),(,y,2):}]=[{:(,z,-7),(,15,8):}] , find the values of x, y and z.

If {:[(x+y,y-z),(z-2x,y-x)]:}={:[(3,-1),(1,1)]:} , then

If [(x,3x-y),(2x+z,3y-w)]=[(3,2),(4,7)], then find x+y+z+w.

The determinant |[ C(x,1) ,C(x,2), C(x,3)] , [C(y,1) ,C(y,2), C(y,3)] , [C(z,1) ,C(z,2), C(z,3)]|= (i) 1/3xyz(x+y)(y+z)(z+x) (ii) 1/4xyz(x+y-z)(y+z-x) (iii) 1/12xyz(x-y)(y-z)(z-x) (iv) none

Find A^(-1) , where A=[{:(4,2,3),(1,1,1),(3,1,-2):}] Hence, solve the following system equations {:(4x+2y+3z=2),(x+y+z=1),(3x+y-2z=5):}

If |(x, x^2, x^3 +1), (y, y^2, y^3+1), (z, z^2, z^3+1)| = 0 and x ,y and z are not equal to any other, prove that, xyz = -1

STATEMENT-1 : The centroid of a tetrahedron with vertices (0, 0,0), (4, 0, 0), (0, -8, 0), (0, 0, 12)is (1, -2, 3). and STATEMENT-2 : The centroid of a triangle with vertices (x_(1), y_(1), z_(1)), (x_(2), y_(2), z_(2)) and (x_(3), y_(3), z_(3)) is ((x_(1)+x_(2)+x_(3))/3, (y_(1)+y_(2)+y_(3))/3, (z_(1)+z_(2)+z_(3))/3)

If A= {x,y,z}, B=(1,2,3} and R= {(x,2),(y,3),(z,1),(z,2), then find R^(-1) .

Find x ,\ y ,\ z ,\ t if 2[(x, z ),(y ,t)]+3[(1,-1),( 0, 2)]=3[(3, 5),( 4 ,6)] .