Home
Class 10
MATHS
Solve for a,b and c, if, (i) [{:(,-4,a...

Solve for a,b and c, if,
(i) `[{:(,-4,a+5),(,3,2):}]=[{:(,b+4,2),(,3,c-1):}]`
(ii) `[{:(,a,a-b),(,b+c,0):}]=[{:(,3,-1),(,2,0):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve for \( a \), \( b \), and \( c \) in the given matrix equations, we will break down the problem step by step. ### Part (i) We have the equation: \[ \begin{pmatrix} -4 & a + 5 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} b + 4 & 2 \\ 3 & c - 1 \end{pmatrix} \] From this equation, we can equate the corresponding elements of the matrices. 1. **Equate the first element:** \[ -4 = b + 4 \] To find \( b \), we solve for \( b \): \[ b = -4 - 4 = -8 \] 2. **Equate the second element of the first row:** \[ a + 5 = 2 \] To find \( a \), we solve for \( a \): \[ a = 2 - 5 = -3 \] 3. **Equate the second element of the second row:** \[ 2 = c - 1 \] To find \( c \), we solve for \( c \): \[ c = 2 + 1 = 3 \] Thus, from part (i), we have: \[ a = -3, \quad b = -8, \quad c = 3 \] ### Part (ii) We have the equation: \[ \begin{pmatrix} a & a - b \\ b + c & 0 \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ 2 & 0 \end{pmatrix} \] Again, we equate the corresponding elements of the matrices. 1. **Equate the first element:** \[ a = 3 \] 2. **Equate the second element of the first row:** \[ a - b = -1 \] Substituting \( a = 3 \): \[ 3 - b = -1 \] Solving for \( b \): \[ -b = -1 - 3 \implies -b = -4 \implies b = 4 \] 3. **Equate the first element of the second row:** \[ b + c = 2 \] Substituting \( b = 4 \): \[ 4 + c = 2 \] Solving for \( c \): \[ c = 2 - 4 = -2 \] Thus, from part (ii), we have: \[ a = 3, \quad b = 4, \quad c = -2 \] ### Final Results Combining results from both parts, we have: - From part (i): \( a = -3, b = -8, c = 3 \) - From part (ii): \( a = 3, b = 4, c = -2 \)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9B|11 Videos
  • MATRICES

    ICSE|Exercise Exercise 9C|38 Videos
  • MATRICES

    ICSE|Exercise Exercise 9D|25 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

If [{:(,a,3),(,4,1):}]+[{:(,2,b),(,1,-2):}]-[{:(,1,1),(,-2,c):}] =[{:(,5,0),(,7,3):}] find the values of a,b and c.

(i) if A=[{:(1,-4),(3,1):}]and b=[{:(1,0,5),(-2,4,3):}], then show that : (AB)'=B'A' (ii) if A=[{:(2,3),(0,1):}]and B=[{:(3,4),(2,1):}], then prove that : (AB)'=B'A'

Let A=[{:(,2,1),(,0,-2):}], B=[{:(,4,1),(,-3,-2):}] and C=[{:(,-3,2),(,-1,4):}] . Find A^2+AC-5B .

If A=[{:(,5,4),(,3,-1):}], B=[{:(,2,1),(,0,4):}] and C=[{:(,-3,2),(,1,0):}] , find : (i) A+C (ii) B-A (iii) A+B-C

If A=[{:(1,2),(-2,1):}],B=[{:(2,3),(3,-4):}] and C=[{:(1,0),(-1,0):}] , verfity (i) A(B+C)=AB+AC.

Let A+B+C= [{:(,4,-1),(,0,1):}],4A+2B+C=[{:(,0,-1),(,-3,2):}]and 9A+3B+C=[{:(,0,2),(,2,1):}]"then find A"

If A = [{:(0,4),(1,0):}], B = [{:( -2,0),(3,-2) :} ] and C = [ {:( -1,-2),(2,0) :}] show that : (B- C ) A = BA - CA

Given A=[{:(,2,1),(,3,0):}], B=[(1,1),(5,2)] and C=[{:(,-3,-1),(,0,0):}] , find (i) 2A-3B+C (ii) A+2C-B

Given, A=[{:(1,3,5),(-2,0,2),(0,0,-3):}], B = [{:(0,3),(-2,0),(0,-4):}] and C=[{:(4,1,-2),(3,2,1),(2,-1,7):}], find (whichever defined) (i)A+B. (ii)A+C.

Match the following and choose the correct combination from the options given : (a) {:(A, B, C, D),(3 , 1, 5, 4):} (b) {:(A, B, C, D),(1, 2, 3, 4):} (c) {:(A, B, C, D),(2, 1, 3, 4):} (d) {:(A, B, C, D),(3, 1, 5, 2):}