Home
Class 10
MATHS
If A=[{:(,2),(,5):}], B=[{:(,1),(,4):}] ...

If `A=[{:(,2),(,5):}], B=[{:(,1),(,4):}] and C=[{:(,6),(,-2):}]`, find
(i) B+C (ii) A-C
(iii) A+B-C (iv) A-B+C

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will perform the matrix operations as specified in the question. Given matrices: - \( A = \begin{pmatrix} 2 & 5 \end{pmatrix} \) - \( B = \begin{pmatrix} 1 & 4 \end{pmatrix} \) - \( C = \begin{pmatrix} 6 & -2 \end{pmatrix} \) ### (i) Find \( B + C \) To add matrices \( B \) and \( C \): \[ B + C = \begin{pmatrix} 1 & 4 \end{pmatrix} + \begin{pmatrix} 6 & -2 \end{pmatrix} \] We add corresponding elements: \[ = \begin{pmatrix} 1 + 6 & 4 + (-2) \end{pmatrix} = \begin{pmatrix} 7 & 2 \end{pmatrix} \] ### (ii) Find \( A - C \) To subtract matrix \( C \) from \( A \): \[ A - C = \begin{pmatrix} 2 & 5 \end{pmatrix} - \begin{pmatrix} 6 & -2 \end{pmatrix} \] We subtract corresponding elements: \[ = \begin{pmatrix} 2 - 6 & 5 - (-2) \end{pmatrix} = \begin{pmatrix} -4 & 7 \end{pmatrix} \] ### (iii) Find \( A + B - C \) First, we add \( A \) and \( B \): \[ A + B = \begin{pmatrix} 2 & 5 \end{pmatrix} + \begin{pmatrix} 1 & 4 \end{pmatrix} \] Adding corresponding elements: \[ = \begin{pmatrix} 2 + 1 & 5 + 4 \end{pmatrix} = \begin{pmatrix} 3 & 9 \end{pmatrix} \] Now, we subtract \( C \): \[ A + B - C = \begin{pmatrix} 3 & 9 \end{pmatrix} - \begin{pmatrix} 6 & -2 \end{pmatrix} \] Subtracting corresponding elements: \[ = \begin{pmatrix} 3 - 6 & 9 - (-2) \end{pmatrix} = \begin{pmatrix} -3 & 11 \end{pmatrix} \] ### (iv) Find \( A - B + C \) First, we subtract \( B \) from \( A \): \[ A - B = \begin{pmatrix} 2 & 5 \end{pmatrix} - \begin{pmatrix} 1 & 4 \end{pmatrix} \] Subtracting corresponding elements: \[ = \begin{pmatrix} 2 - 1 & 5 - 4 \end{pmatrix} = \begin{pmatrix} 1 & 1 \end{pmatrix} \] Now, we add \( C \): \[ A - B + C = \begin{pmatrix} 1 & 1 \end{pmatrix} + \begin{pmatrix} 6 & -2 \end{pmatrix} \] Adding corresponding elements: \[ = \begin{pmatrix} 1 + 6 & 1 + (-2) \end{pmatrix} = \begin{pmatrix} 7 & -1 \end{pmatrix} \] ### Summary of Results 1. \( B + C = \begin{pmatrix} 7 & 2 \end{pmatrix} \) 2. \( A - C = \begin{pmatrix} -4 & 7 \end{pmatrix} \) 3. \( A + B - C = \begin{pmatrix} -3 & 11 \end{pmatrix} \) 4. \( A - B + C = \begin{pmatrix} 7 & -1 \end{pmatrix} \)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9B|11 Videos
  • MATRICES

    ICSE|Exercise Exercise 9C|38 Videos
  • MATRICES

    ICSE|Exercise Exercise 9D|25 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,5,4),(,3,-1):}], B=[{:(,2,1),(,0,4):}] and C=[{:(,-3,2),(,1,0):}] , find : (i) A+C (ii) B-A (iii) A+B-C

Let A=[{:(,5,4),(,3,-2):}], B=[{:(,-3,0),(,1,4):}] and C=[{:(,1,-3),(,0,2):}], find : (i) A+B and B+A (ii) (A+B)+C and A+(B+C) (iii) Is A+B=B+A? (iv) Is (A+B) +C=A+(B+C)?

Given A=[{:(,2,1),(,3,0):}], B=[(1,1),(5,2)] and C=[{:(,-3,-1),(,0,0):}] , find (i) 2A-3B+C (ii) A+2C-B

A=[{:(2,4),(3,2):}],B=[{:(1,3),(-2,5):}],C=[{:(-2,5),(3,4):}] find each of the following : (i) A+B (ii) A-B (iii) 3A-C (iv) AB (V) BA

If A ={6,7,8,9}, B={4,6,8,10} and C={x : x in N : 2 lt x le 7} , find: (i) A-B, (ii) B-C, (iii) B-(A-C), (iv) A-(B cup C) (v) B-(A cap C) , (vi) B-B

Let U={1,2,3,4,5,6,7,8,9}, A={1,2,3,4},B={2,4,6,8} and C={3,4,5,6} Find : (i) A' (ii) B' (iii) (A cup C)' (iv) (A cap B)' (v) (A')' (vi) (B-C)' .

If A={1,2,3,4},B={2,3,4,5} and C={4,5,6,7} , then find each of the following : (i) A - (B-C) (ii) (A- B) -C .

If universal set U= {0,1,2,3,4,5,6,7}, A={2,3,7}, B={4,6} and C={0,2,4,6} . Find the following (i) A cap phi (ii) B' cap C (iii) A' cap C (iv) A cap A'

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0

If A = {1,2,3,4}, B = {3,4,5,6}, C={5,6,7,8} and D= {7,8,9,10} , find : (i) A cup B (ii) A cup C (c) B cup C (iv) B cup D (v) A cup B cup C (vi) A cup B cup D (vii) B cup C cup D .