Home
Class 10
MATHS
Given : M =[(5,-3),(-2, 4)] find its tra...

Given `: M =[(5,-3),(-2, 4)]` find its transpose matrix M'. If possible, find :
(i) M+M`""^(t)` (ii) `M^(t)-M`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will follow these instructions: ### Step 1: Find the Transpose of Matrix M Given the matrix: \[ M = \begin{pmatrix} 5 & -3 \\ -2 & 4 \end{pmatrix} \] The transpose of a matrix is obtained by swapping its rows with columns. Therefore, the transpose \( M' \) will be: \[ M' = \begin{pmatrix} 5 & -2 \\ -3 & 4 \end{pmatrix} \] ### Step 2: Calculate \( M + M' \) Now we will add matrix \( M \) and its transpose \( M' \): \[ M + M' = \begin{pmatrix} 5 & -3 \\ -2 & 4 \end{pmatrix} + \begin{pmatrix} 5 & -2 \\ -3 & 4 \end{pmatrix} \] Adding the corresponding elements: \[ \begin{pmatrix} 5 + 5 & -3 + (-2) \\ -2 + (-3) & 4 + 4 \end{pmatrix} = \begin{pmatrix} 10 & -5 \\ -5 & 8 \end{pmatrix} \] ### Step 3: Calculate \( M' - M \) Now we will subtract matrix \( M \) from its transpose \( M' \): \[ M' - M = \begin{pmatrix} 5 & -2 \\ -3 & 4 \end{pmatrix} - \begin{pmatrix} 5 & -3 \\ -2 & 4 \end{pmatrix} \] Subtracting the corresponding elements: \[ \begin{pmatrix} 5 - 5 & -2 - (-3) \\ -3 - (-2) & 4 - 4 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \] ### Final Answers 1. The transpose of matrix \( M \) is: \[ M' = \begin{pmatrix} 5 & -2 \\ -3 & 4 \end{pmatrix} \] 2. The result of \( M + M' \) is: \[ M + M' = \begin{pmatrix} 10 & -5 \\ -5 & 8 \end{pmatrix} \] 3. The result of \( M' - M \) is: \[ M' - M = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9B|11 Videos
  • MATRICES

    ICSE|Exercise Exercise 9C|38 Videos
  • MATRICES

    ICSE|Exercise Exercise 9D|25 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

If matrix A=[{:(,2,1,3),(,4,-3,2):}] and B=[{:(,3,-2),(,7,4):}] , find transpose matrices A^t and B^t . If possible, find (i) A+A^t (ii) B+B^t

Given A=[{:(,-3,6),(,0,-9):}] and A^t is it transpose matrix. Find : (i) 2A+3A^(t) (ii) 2A^(t)-3A

If m - (1)/(m ) = 5 , find : (i) m^(2) + (1)/( m^2)

If M xx [ {:(3,2, (2, -1):}] = [-14], find : the order of matrix M.

If [{:(,1,4),(,-2,3):}] +2M=3 [{:(,3,2),(,0,-3):}] find the matrix M.

If P=[(6,-2),(4,-6):}] and Q = [{:(5,3),(2,0):}] find the matrix M such that 2Q - 3P - 3M =0

If m - (1)/(m ) = 5 , find : (iii) m^(2) - (1)/( m^2)

If m - (1)/(m ) = 5 , find : (ii) m^4 + (1)/( m^4)

If M=[{:(,1,2),(,2,1):}] and I is a unit matrix of the same order as that of M, show that M^2=2M+3I

Given [(4,2),(-1,1)] M = 6 I, where M is a matrix and I is the unit matrix or order 2xx2 . (ii) Find the matrix M.