Home
Class 10
MATHS
Given A=[{:(,-1,0),(,2,-4):}] and B=[{:(...

Given `A=[{:(,-1,0),(,2,-4):}] and B=[{:(,3,-3),(,-2,0):}]` find the matrix X in each of the following
(i) A+X=B
(ii) A-X=B
(iii) X-B=A

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the matrix \( X \) in three different scenarios involving matrices \( A \) and \( B \). Given: \[ A = \begin{pmatrix} -1 & 0 \\ 2 & -4 \end{pmatrix} \] \[ B = \begin{pmatrix} 3 & -3 \\ -2 & 0 \end{pmatrix} \] Let \( X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \). ### (i) Solve for \( A + X = B \) 1. Start with the equation: \[ A + X = B \] Substituting the values of \( A \) and \( B \): \[ \begin{pmatrix} -1 & 0 \\ 2 & -4 \end{pmatrix} + \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 3 & -3 \\ -2 & 0 \end{pmatrix} \] 2. Combine the matrices: \[ \begin{pmatrix} -1 + a & 0 + b \\ 2 + c & -4 + d \end{pmatrix} = \begin{pmatrix} 3 & -3 \\ -2 & 0 \end{pmatrix} \] 3. Set up equations by equating corresponding elements: - From the first element: \( -1 + a = 3 \) - From the second element: \( 0 + b = -3 \) - From the third element: \( 2 + c = -2 \) - From the fourth element: \( -4 + d = 0 \) 4. Solve each equation: - \( a = 3 + 1 = 4 \) - \( b = -3 \) - \( c = -2 - 2 = -4 \) - \( d = 0 + 4 = 4 \) 5. Therefore, the matrix \( X \) is: \[ X = \begin{pmatrix} 4 & -3 \\ -4 & 4 \end{pmatrix} \] ### (ii) Solve for \( A - X = B \) 1. Start with the equation: \[ A - X = B \] Substituting the values: \[ \begin{pmatrix} -1 & 0 \\ 2 & -4 \end{pmatrix} - \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 3 & -3 \\ -2 & 0 \end{pmatrix} \] 2. Rearranging gives: \[ \begin{pmatrix} -1 - a & 0 - b \\ 2 - c & -4 - d \end{pmatrix} = \begin{pmatrix} 3 & -3 \\ -2 & 0 \end{pmatrix} \] 3. Set up equations: - From the first element: \( -1 - a = 3 \) - From the second element: \( 0 - b = -3 \) - From the third element: \( 2 - c = -2 \) - From the fourth element: \( -4 - d = 0 \) 4. Solve each equation: - \( -a = 3 + 1 \) → \( a = -4 \) - \( -b = -3 \) → \( b = 3 \) - \( -c = -2 - 2 \) → \( c = 4 \) - \( -d = 0 + 4 \) → \( d = -4 \) 5. Therefore, the matrix \( X \) is: \[ X = \begin{pmatrix} -4 & 3 \\ 4 & -4 \end{pmatrix} \] ### (iii) Solve for \( X - B = A \) 1. Start with the equation: \[ X - B = A \] Substituting the values: \[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} - \begin{pmatrix} 3 & -3 \\ -2 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 2 & -4 \end{pmatrix} \] 2. Rearranging gives: \[ \begin{pmatrix} a - 3 & b + 3 \\ c + 2 & d - 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 2 & -4 \end{pmatrix} \] 3. Set up equations: - From the first element: \( a - 3 = -1 \) - From the second element: \( b + 3 = 0 \) - From the third element: \( c + 2 = 2 \) - From the fourth element: \( d = -4 \) 4. Solve each equation: - \( a = -1 + 3 = 2 \) - \( b = 0 - 3 = -3 \) - \( c = 2 - 2 = 0 \) - \( d = -4 \) 5. Therefore, the matrix \( X \) is: \[ X = \begin{pmatrix} 2 & -3 \\ 0 & -4 \end{pmatrix} \] ### Summary of Solutions: 1. \( X = \begin{pmatrix} 4 & -3 \\ -4 & 4 \end{pmatrix} \) 2. \( X = \begin{pmatrix} -4 & 3 \\ 4 & -4 \end{pmatrix} \) 3. \( X = \begin{pmatrix} 2 & -3 \\ 0 & -4 \end{pmatrix} \)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9B|11 Videos
  • MATRICES

    ICSE|Exercise Exercise 9C|38 Videos
  • MATRICES

    ICSE|Exercise Exercise 9D|25 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

Given A= [(2),(-3)] , B= [(0),(2)] and C= [(-1),(4)] , find the matrix X in each of the following: (i) X+B=C-A (ii) A-X=B+C

If A=[{:(,8,6),(,-2,4):}] and B=[{:(,-3,5),(,1,0):}] then solve for 2 xx 2 matrix X such that (i) A+X=B (ii) X-B=A

Given matrix A=[{:(,5),(,-3):}] and matrix B=[{:(,-1),(,7):}] find matrix X such that : A+2X=B.

If A=[{:(,3,x),(,0,1):}] and B=[{:(,9,16),(,0,-y):}] find x and y when A^2=B .

If A=[{:(,2,x),(,0,1):}] and B=[{:(,4,36),(,0,1):}] , find the value of x, given that A^2=B

Given A=[{:(,2,-1),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(,0,2):}] , Find the matrix X such that A+X=2B+C.

"If A"=[{:(,8,0),(,4,-2),(,3,6):}] and B=[{:(,2,-2),(,4,2),(,-5,1):}] then find the matrix X, such that 2A+3X=5B

Given A=[{:(,2,-6),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,4,0),(,0,2):}] . Find the matrix X such that A+2X=2B+C.

Given A=[{:(,1,1),(,-2,0):}] and B=[{:(,2,-1),(,1,1):}] Solve for matrix X: (i) X+2A=B (ii) 3A+B+2X=0