Home
Class 10
MATHS
Find x and y if: (i) 3[(4),(x)] +2[(y)...

Find x and y if:
(i) `3[(4),(x)] +2[(y),(-3)]=[(10),( 0)]`
(ii) `x [{:(,-1),(,2):}] -4[{:(,-2),(,-y):}]=[{:(,7),(,-8):}]`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the problem step by step. ### Part (i) We need to solve the equation: \[ 3 \begin{pmatrix} 4 \\ x \end{pmatrix} + 2 \begin{pmatrix} y \\ -3 \end{pmatrix} = \begin{pmatrix} 10 \\ 0 \end{pmatrix} \] **Step 1: Multiply the matrices by their respective scalars.** \[ 3 \begin{pmatrix} 4 \\ x \end{pmatrix} = \begin{pmatrix} 3 \cdot 4 \\ 3 \cdot x \end{pmatrix} = \begin{pmatrix} 12 \\ 3x \end{pmatrix} \] \[ 2 \begin{pmatrix} y \\ -3 \end{pmatrix} = \begin{pmatrix} 2 \cdot y \\ 2 \cdot -3 \end{pmatrix} = \begin{pmatrix} 2y \\ -6 \end{pmatrix} \] **Step 2: Add the two resulting matrices.** \[ \begin{pmatrix} 12 \\ 3x \end{pmatrix} + \begin{pmatrix} 2y \\ -6 \end{pmatrix} = \begin{pmatrix} 12 + 2y \\ 3x - 6 \end{pmatrix} \] **Step 3: Set the resulting matrix equal to the right-hand side matrix.** \[ \begin{pmatrix} 12 + 2y \\ 3x - 6 \end{pmatrix} = \begin{pmatrix} 10 \\ 0 \end{pmatrix} \] **Step 4: Equate the corresponding elements of the matrices.** 1. From the first row: \[ 12 + 2y = 10 \] \[ 2y = 10 - 12 \implies 2y = -2 \implies y = -1 \] 2. From the second row: \[ 3x - 6 = 0 \] \[ 3x = 6 \implies x = \frac{6}{3} = 2 \] Thus, the values are: \[ x = 2, \quad y = -1 \] ### Part (ii) We need to solve the equation: \[ x \begin{pmatrix} -1 & 2 \\ -4 & -y \end{pmatrix} - 4 \begin{pmatrix} -2 & -y \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 7 & -8 \end{pmatrix} \] **Step 1: Multiply the first matrix by x and the second matrix by -4.** \[ x \begin{pmatrix} -1 & 2 \\ -4 & -y \end{pmatrix} = \begin{pmatrix} -x & 2x \\ -4x & -xy \end{pmatrix} \] \[ -4 \begin{pmatrix} -2 & -y \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 8 & 4y \\ 0 & 0 \end{pmatrix} \] **Step 2: Combine the two resulting matrices.** \[ \begin{pmatrix} -x & 2x \\ -4x & -xy \end{pmatrix} + \begin{pmatrix} 8 & 4y \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} -x + 8 & 2x + 4y \\ -4x & -xy \end{pmatrix} \] **Step 3: Set the resulting matrix equal to the right-hand side matrix.** \[ \begin{pmatrix} -x + 8 & 2x + 4y \\ -4x & -xy \end{pmatrix} = \begin{pmatrix} 7 & -8 \\ 0 & 0 \end{pmatrix} \] **Step 4: Equate the corresponding elements of the matrices.** 1. From the first row, first column: \[ -x + 8 = 7 \implies -x = 7 - 8 \implies -x = -1 \implies x = 1 \] 2. From the first row, second column: \[ 2x + 4y = -8 \] Substitute \( x = 1 \): \[ 2(1) + 4y = -8 \implies 2 + 4y = -8 \implies 4y = -8 - 2 \implies 4y = -10 \implies y = -\frac{10}{4} = -\frac{5}{2} \] Thus, the values are: \[ x = 1, \quad y = -\frac{5}{2} \] ### Summary of Solutions - For part (i): \( x = 2, y = -1 \) - For part (ii): \( x = 1, y = -\frac{5}{2} \)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9C|38 Videos
  • MATRICES

    ICSE|Exercise Exercise 9D|25 Videos
  • MATRICES

    ICSE|Exercise Exercise 9A|15 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

Find x and y, if : (i) [{:(,4,3x),(,x,-2):}] [{:(,5),(,1):}]=[{:(,y,8):}] (ii) [{:(,x,0),(,-3,1):}] [{:(,1,1),(,0,y):}]=[{:(,2,2),(,-3,-2):}]

Solve for x and y (i) [{:(,2,5),(,5,2):}] [{:(,x),(,y):}]=[{:(,-7),(,14):}] (ii) [x+y, x-4] [{:(,-1,-2),(,2,2):}]=[-7, -11] (iii) [{:(,-2,0),(,3,1):}] [{:(,-1),(,2x):}] +3[{:(,-2),(,1):}]=2 [{:(,y),(,3):}] .

Find x and y if (x^4+2x i)-(3x^2+y i)=(3-5i)+(1+2y i)

Find x and y, if : [3x 8] [{:(,1,4),(,3,7):}] -3 [2 -7]=5[3,2y]

Find x and y from the following equations: (i) [{:(,5,2),(,-1,y-1):}]-[{:(,1,x-1),(,2,-3):}] =[{:(,4,7),(,-3,2):}] (ii) [-8,x]+[y-2]=[-3,2]

Find the values of x and y from each of the following matrix equation : (i) [{:(x+y),(x-y):}]=[(3)/(1)](ii) [{:(x+y,7),(0,2x):}]=[{:(-1,7),(0,6):}]

Find X if Y=[(3, 2),( 1, 4)] and 2X+Y=[(1, 0),(-3, 2)] .

Find the values of x and y. If (i) (x,4)=(-7,y) (ii) (x-3,6)=(4,x+y)

If matrix X=[{:(,-3,4),(,2,-3):}] [{:(,2),(,-2):}] and 2X-3Y=[{:(,10),(,-8):}] find the matrix 'X' and matrix Y.

Find the value of x and y that satisfy the equations [(3,-2),(3,0),(2,4)] [(y,y),(x,x)]=[(3,3),(3y,3y),(10,10)]