Home
Class 10
MATHS
Given A=[{:(,2,1),(,3,0):}], B=[(1,1),(5...

Given `A=[{:(,2,1),(,3,0):}], B=[(1,1),(5,2)] and C=[{:(,-3,-1),(,0,0):}]`, find
(i) 2A-3B+C (ii) A+2C-B

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given matrices problem, we will follow these steps: ### Given Matrices - \( A = \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix} \) - \( B = \begin{pmatrix} 1 & 1 \\ 5 & 2 \end{pmatrix} \) - \( C = \begin{pmatrix} -3 & -1 \\ 0 & 0 \end{pmatrix} \) ### Part (i): Find \( 2A - 3B + C \) 1. **Calculate \( 2A \)**: \[ 2A = 2 \times \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 2 \\ 6 & 0 \end{pmatrix} \] **Hint**: Multiply each element of matrix \( A \) by 2. 2. **Calculate \( -3B \)**: \[ -3B = -3 \times \begin{pmatrix} 1 & 1 \\ 5 & 2 \end{pmatrix} = \begin{pmatrix} -3 & -3 \\ -15 & -6 \end{pmatrix} \] **Hint**: Multiply each element of matrix \( B \) by -3. 3. **Add \( C \)**: \[ C = \begin{pmatrix} -3 & -1 \\ 0 & 0 \end{pmatrix} \] 4. **Combine all matrices**: \[ 2A - 3B + C = \begin{pmatrix} 4 & 2 \\ 6 & 0 \end{pmatrix} + \begin{pmatrix} -3 & -3 \\ -15 & -6 \end{pmatrix} + \begin{pmatrix} -3 & -1 \\ 0 & 0 \end{pmatrix} \] Now, add the matrices element-wise: - First row, first column: \( 4 - 3 - 3 = -2 \) - First row, second column: \( 2 - 3 - 1 = -2 \) - Second row, first column: \( 6 - 15 + 0 = -9 \) - Second row, second column: \( 0 - 6 + 0 = -6 \) Thus, \[ 2A - 3B + C = \begin{pmatrix} -2 & -2 \\ -9 & -6 \end{pmatrix} \] ### Part (ii): Find \( A + 2C - B \) 1. **Calculate \( 2C \)**: \[ 2C = 2 \times \begin{pmatrix} -3 & -1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} -6 & -2 \\ 0 & 0 \end{pmatrix} \] **Hint**: Multiply each element of matrix \( C \) by 2. 2. **Combine \( A \), \( 2C \), and \( -B \)**: \[ A + 2C - B = \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix} + \begin{pmatrix} -6 & -2 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 5 & 2 \end{pmatrix} \] First, we can add \( A \) and \( 2C \): - First row, first column: \( 2 - 6 = -4 \) - First row, second column: \( 1 - 2 = -1 \) - Second row, first column: \( 3 + 0 = 3 \) - Second row, second column: \( 0 + 0 = 0 \) So, \[ A + 2C = \begin{pmatrix} -4 & -1 \\ 3 & 0 \end{pmatrix} \] 3. **Now subtract \( B \)**: \[ A + 2C - B = \begin{pmatrix} -4 & -1 \\ 3 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 5 & 2 \end{pmatrix} \] Now, subtract element-wise: - First row, first column: \( -4 - 1 = -5 \) - First row, second column: \( -1 - 1 = -2 \) - Second row, first column: \( 3 - 5 = -2 \) - Second row, second column: \( 0 - 2 = -2 \) Thus, \[ A + 2C - B = \begin{pmatrix} -5 & -2 \\ -2 & -2 \end{pmatrix} \] ### Final Answers: (i) \( 2A - 3B + C = \begin{pmatrix} -2 & -2 \\ -9 & -6 \end{pmatrix} \) (ii) \( A + 2C - B = \begin{pmatrix} -5 & -2 \\ -2 & -2 \end{pmatrix} \)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9C|38 Videos
  • MATRICES

    ICSE|Exercise Exercise 9D|25 Videos
  • MATRICES

    ICSE|Exercise Exercise 9A|15 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,5,4),(,3,-1):}], B=[{:(,2,1),(,0,4):}] and C=[{:(,-3,2),(,1,0):}] , find : (i) A+C (ii) B-A (iii) A+B-C

Given A=[{:(,1,2),(,-2,3):}], B=[{:(,-2,-1),(,1,2):}] and C=[{:(,0,3),(,2,-1):}] , find A+2B-3C.

Let A=[{:(,5,4),(,3,-2):}], B=[{:(,-3,0),(,1,4):}] and C=[{:(,1,-3),(,0,2):}], find : (i) A+B and B+A (ii) (A+B)+C and A+(B+C) (iii) Is A+B=B+A? (iv) Is (A+B) +C=A+(B+C)?

Let A=[{:(,2,1),(,0,-2):}], B=[{:(,4,1),(,-3,-2):}] and C=[{:(,-3,2),(,-1,4):}] . Find A^2+AC-5B .

Given A=[{:(,2,-1),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(,0,2):}] , Find the matrix X such that A+X=2B+C.

If A=[{:(,2,1),(,0,0):}], B=[{:(,2,3),(,4,1):}] and C=[{:(,1,4),(,0,2):}] then show that (i) A(B+C)=AB+AC (ii) (B-A)C=BC-AC .

If A=[{:(1,2),(-2,1):}],B=[{:(2,3),(3,-4):}] and C=[{:(1,0),(-1,0):}] , verfity (i) A(B+C)=AB+AC.

if A=[(1,2),(3,4):}],B=[{:(-1,0),(2,3):}]and C=[{:(1,-1),(0,1):}], then show that : (i) A(B+C)=AB+AC (ii) (A-B)C=AC-BC.

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

Given A=[{:(,1,4),(,2,3):}] and B=[{:(,-4,-1),(,-3,-2):}] (i) find the matrix 2A+B. (ii) find a matrix C such that : C+B=[{:(,0,0),(,0,0):}]