Home
Class 10
MATHS
If [{:(,4,-2),(,4,0):}]+3A=[{:(,-2,-2),(...

If `[{:(,4,-2),(,4,0):}]+3A=[{:(,-2,-2),(,1,-3):}]` find A.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \([ \begin{pmatrix} 4 & -2 \\ 4 & 0 \end{pmatrix} ] + 3A = [ \begin{pmatrix} -2 & -2 \\ 1 & -3 \end{pmatrix} ]\), we will follow these steps: ### Step 1: Isolate \(3A\) We start by isolating \(3A\) on one side of the equation. We can do this by subtracting the matrix \([ \begin{pmatrix} 4 & -2 \\ 4 & 0 \end{pmatrix} ]\) from both sides: \[ 3A = [ \begin{pmatrix} -2 & -2 \\ 1 & -3 \end{pmatrix} ] - [ \begin{pmatrix} 4 & -2 \\ 4 & 0 \end{pmatrix} ] \] ### Step 2: Perform the subtraction Now we will perform the matrix subtraction element-wise: \[ 3A = [ \begin{pmatrix} -2 - 4 & -2 - (-2) \\ 1 - 4 & -3 - 0 \end{pmatrix} ] \] Calculating each element: - First element: \(-2 - 4 = -6\) - Second element: \(-2 + 2 = 0\) - Third element: \(1 - 4 = -3\) - Fourth element: \(-3 - 0 = -3\) So we have: \[ 3A = [ \begin{pmatrix} -6 & 0 \\ -3 & -3 \end{pmatrix} ] \] ### Step 3: Solve for \(A\) To find \(A\), we need to divide each element of the matrix \(3A\) by 3: \[ A = \frac{1}{3} [ \begin{pmatrix} -6 & 0 \\ -3 & -3 \end{pmatrix} ] \] Calculating each element: - First element: \(-6 / 3 = -2\) - Second element: \(0 / 3 = 0\) - Third element: \(-3 / 3 = -1\) - Fourth element: \(-3 / 3 = -1\) Thus, we find: \[ A = [ \begin{pmatrix} -2 & 0 \\ -1 & -1 \end{pmatrix} ] \] ### Final Answer The matrix \(A\) is: \[ A = [ \begin{pmatrix} -2 & 0 \\ -1 & -1 \end{pmatrix} ] \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9C|38 Videos
  • MATRICES

    ICSE|Exercise Exercise 9D|25 Videos
  • MATRICES

    ICSE|Exercise Exercise 9A|15 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

If [{:(,1,4),(,-2,3):}] +2M=3 [{:(,3,2),(,0,-3):}] find the matrix M.

Let A=[{:(,2,1),(,0,-2):}], B=[{:(,4,1),(,-3,-2):}] and C=[{:(,-3,2),(,-1,4):}] . Find A^2+AC-5B .

If A=[{:(4,4),(-2,6):}] and B=[{:(2,1),(3,-2):}] find the matrix D such that 3A -2B + 2D = 0

Let A+B+C= [{:(,4,-1),(,0,1):}],4A+2B+C=[{:(,0,-1),(,-3,2):}]and 9A+3B+C=[{:(,0,2),(,2,1):}]"then find A"

Given A=[{:(,1,4),(,2,3):}] and B=[{:(,-4,-1),(,-3,-2):}] (i) find the matrix 2A+B. (ii) find a matrix C such that : C+B=[{:(,0,0),(,0,0):}]

if A=[{:(4,0,-3),(1,2,0):}]and B=[{:(2,1),(1,-2),(3,4):}]' then find AB and BA.

if A=[{:(1,2,-5),(-3,4,6):}]and B[{:(-2,3,-4),(1,2,3):}]' then find 2A+B.

If A[{:(3,-4),(1,1),(2,0):}] and B=[{:(2,1,2),(1,2,4):}] and B=[{:(4,1),(2,3),(1,2):}]

if A=[{:(1,2,3),(4,5,6):}]and B=[{:(-3,-2),(0,1),(-4,-5):}], then find AB and BA ,

Find AB and BA if exists from the following matrices A and B: (i) A=[{:(2,3,-1),(0,1,2):}]and B=[{:(2,-6),(-4,0):}] (ii) A=[{:(1,2,3),(0,1,-2),(-1,0,-1):}]and B=[{:(0,0,2),(2,0,0),(0,2,0):}] (iii) A=[{:(0,3,4),(2,1,-2),(1,-3,-1):}]and B=[{:(2,1,3),(-1,0,-2):}]