Home
Class 10
MATHS
Given A=[{:(,1,4),(,2,3):}] and B=[{:(,-...

Given `A=[{:(,1,4),(,2,3):}] and B=[{:(,-4,-1),(,-3,-2):}]`
(i) find the matrix 2A+B.
(ii) find a matrix C such that : `C+B=[{:(,0,0),(,0,0):}]`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the problem step by step. ### Given Matrices: - Matrix A: \[ A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \] - Matrix B: \[ B = \begin{pmatrix} -4 & -1 \\ -3 & -2 \end{pmatrix} \] ### (i) Find the matrix \(2A + B\) **Step 1: Multiply matrix A by 2.** \[ 2A = 2 \times \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 2 \times 1 & 2 \times 4 \\ 2 \times 2 & 2 \times 3 \end{pmatrix} = \begin{pmatrix} 2 & 8 \\ 4 & 6 \end{pmatrix} \] **Step 2: Add matrix \(2A\) to matrix \(B\).** \[ 2A + B = \begin{pmatrix} 2 & 8 \\ 4 & 6 \end{pmatrix} + \begin{pmatrix} -4 & -1 \\ -3 & -2 \end{pmatrix} = \begin{pmatrix} 2 + (-4) & 8 + (-1) \\ 4 + (-3) & 6 + (-2) \end{pmatrix} = \begin{pmatrix} -2 & 7 \\ 1 & 4 \end{pmatrix} \] ### Answer for (i): \[ 2A + B = \begin{pmatrix} -2 & 7 \\ 1 & 4 \end{pmatrix} \] ### (ii) Find a matrix \(C\) such that \(C + B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\) **Step 1: Rearrange the equation to find \(C\).** \[ C + B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \implies C = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} - B \] **Step 2: Substitute the values of matrix \(B\).** \[ C = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} -4 & -1 \\ -3 & -2 \end{pmatrix} = \begin{pmatrix} 0 - (-4) & 0 - (-1) \\ 0 - (-3) & 0 - (-2) \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \] ### Answer for (ii): \[ C = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \] ### Summary of Solutions: 1. \(2A + B = \begin{pmatrix} -2 & 7 \\ 1 & 4 \end{pmatrix}\) 2. \(C = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}\)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9C|38 Videos
  • MATRICES

    ICSE|Exercise Exercise 9D|25 Videos
  • MATRICES

    ICSE|Exercise Exercise 9A|15 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(4,4),(-2,6):}] and B=[{:(2,1),(3,-2):}] find the matrix D such that 3A -2B + 2D = 0

if A=[{:(1,-4,5),(2,1,-3):}]and B=[{:(2,3,-1),(1,2,3):}] then find a matrix C if 2A+3B -4C is a zero matrix.

Given A=[{:(,1,1),(,-2,0):}] and B=[{:(,2,-1),(,1,1):}] Solve for matrix X: (i) X+2A=B (ii) 3A+B+2X=0

If A=[{:(,0,-1),(,4,-3):}], B=[{:(,-5),(,6):}] and 3A xx M=2B , find matrix M.

Given A=[{:(,2,-6),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,4,0),(,0,2):}] . Find the matrix X such that A+2X=2B+C.

If A=[{:(,1,3),(,3,4):}], B=[{:(,-2,1),(,-3,2):}] and A^2-5B^2=5C . find matrix C where C is a 2 by 2 matrix.

Given A=[{:(,1,2),(,-2,3):}], B=[{:(,-2,-1),(,1,2):}] and C=[{:(,0,3),(,2,-1):}] , find A+2B-3C.

Given A=[{:(,2,-1),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(,0,2):}] , Find the matrix X such that A+X=2B+C.

Given A=[{:(,2,1),(,3,0):}], B=[(1,1),(5,2)] and C=[{:(,-3,-1),(,0,0):}] , find (i) 2A-3B+C (ii) A+2C-B

Given A=[{:(,3,0),(,0,4):}], B=[{:(,a,b),(,0,c):}] and AB=A+B, find the values of a,b and c.