Home
Class 10
MATHS
If 2[{:(,3,x),(,0,1):}]+3[{:(,1,3),(,y,2...

If `2[{:(,3,x),(,0,1):}]+3[{:(,1,3),(,y,2):}]=[{:(,z,-7),(,15,8):}]`, find the values of x, y and z.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(2\begin{pmatrix} 3 & x \\ 0 & 1 \end{pmatrix} + 3\begin{pmatrix} 1 & 3 \\ y & 2 \end{pmatrix} = \begin{pmatrix} z & -7 \\ 15 & 8 \end{pmatrix}\), we will follow these steps: ### Step 1: Multiply each matrix by its respective scalar First, we will multiply each element of the first matrix by 2 and the second matrix by 3. \[ 2\begin{pmatrix} 3 & x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 \cdot 3 & 2 \cdot x \\ 2 \cdot 0 & 2 \cdot 1 \end{pmatrix} = \begin{pmatrix} 6 & 2x \\ 0 & 2 \end{pmatrix} \] \[ 3\begin{pmatrix} 1 & 3 \\ y & 2 \end{pmatrix} = \begin{pmatrix} 3 \cdot 1 & 3 \cdot 3 \\ 3 \cdot y & 3 \cdot 2 \end{pmatrix} = \begin{pmatrix} 3 & 9 \\ 3y & 6 \end{pmatrix} \] ### Step 2: Add the resulting matrices Now, we will add the two resulting matrices: \[ \begin{pmatrix} 6 & 2x \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} 3 & 9 \\ 3y & 6 \end{pmatrix} = \begin{pmatrix} 6 + 3 & 2x + 9 \\ 0 + 3y & 2 + 6 \end{pmatrix} = \begin{pmatrix} 9 & 2x + 9 \\ 3y & 8 \end{pmatrix} \] ### Step 3: Set the resulting matrix equal to the right-hand side matrix Now we set the resulting matrix equal to the matrix on the right-hand side: \[ \begin{pmatrix} 9 & 2x + 9 \\ 3y & 8 \end{pmatrix} = \begin{pmatrix} z & -7 \\ 15 & 8 \end{pmatrix} \] ### Step 4: Equate corresponding elements From the equality of the matrices, we can equate the corresponding elements: 1. \(9 = z\) 2. \(2x + 9 = -7\) 3. \(3y = 15\) 4. \(8 = 8\) (This is always true and does not provide new information) ### Step 5: Solve for \(z\) From the first equation: \[ z = 9 \] ### Step 6: Solve for \(x\) From the second equation: \[ 2x + 9 = -7 \implies 2x = -7 - 9 \implies 2x = -16 \implies x = \frac{-16}{2} = -8 \] ### Step 7: Solve for \(y\) From the third equation: \[ 3y = 15 \implies y = \frac{15}{3} = 5 \] ### Final Values Thus, the values are: - \(x = -8\) - \(y = 5\) - \(z = 9\)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9C|38 Videos
  • MATRICES

    ICSE|Exercise Exercise 9D|25 Videos
  • MATRICES

    ICSE|Exercise Exercise 9A|15 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

Given [{:(,x,y+2),(,3,z-1):}] =[{:(,3,1),(,3,2):}] find x,y and z.

If [{:(x+3,2y+x),(z-1,4w-8):}]=[{:(-x-1,0),(" "3,2w):}], then find the value of |x+y|+|z+w|.

If [(1,0,0),(0, 0, 1),(0,1,0)][(x),(y),(z)]=[(2),(-1),(3)] , find x ,\ y ,\ z .

find the values of x,y and zfrom the following equations : (i) [{:(4,3),(x,5):}]=[{:(y,z),(1,5):}] (ii) [{:(x+y,2),(5+z,xy):}]=[{:(6,2),(5,8):}] (iii) [{:(x+y+z),(x+z),(y+z):}]=[{:(9),(5),(7):}]

If x = 2, y = 3 and z = -1, find the values of : x-:y

If x = 2, y = 3 and z = -1, find the values of : (xy)/(z)

If 2^x=3^y=6^(-z) find the value of (1/x+1/y+1/z)

If [(x,3x-y),(2x+z,3y-omega)]=[(3 ,2 ),(4 ,7)] , find x ,\ y ,\ z ,\ omega .

If [(x,3x-y),(2x+z,3y-w)]=[(3,2),(4,7)], then find x+y+z+w.

If x=1, y=2 and z=3 , find the value of: x^3-z^3+y^3