Home
Class 10
MATHS
Given A=[{:(,-3,6),(,0,-9):}] and A^t is...

Given `A=[{:(,-3,6),(,0,-9):}] and A^t` is it transpose matrix. Find :
(i) `2A+3A^(t)` (ii) `2A^(t)-3A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the expressions \(2A + 3A^t\) and \(2A^t - 3A\) where \(A\) is given as: \[ A = \begin{pmatrix} -3 & 6 \\ 0 & -9 \end{pmatrix} \] ### Step 1: Find the Transpose of Matrix A The transpose of a matrix is obtained by swapping its rows and columns. Thus, the transpose \(A^t\) of matrix \(A\) is: \[ A^t = \begin{pmatrix} -3 & 0 \\ 6 & -9 \end{pmatrix} \] ### Step 2: Calculate \(2A\) Now, we will multiply matrix \(A\) by 2: \[ 2A = 2 \times \begin{pmatrix} -3 & 6 \\ 0 & -9 \end{pmatrix} = \begin{pmatrix} 2 \times -3 & 2 \times 6 \\ 2 \times 0 & 2 \times -9 \end{pmatrix} = \begin{pmatrix} -6 & 12 \\ 0 & -18 \end{pmatrix} \] ### Step 3: Calculate \(3A^t\) Next, we will multiply the transpose \(A^t\) by 3: \[ 3A^t = 3 \times \begin{pmatrix} -3 & 0 \\ 6 & -9 \end{pmatrix} = \begin{pmatrix} 3 \times -3 & 3 \times 0 \\ 3 \times 6 & 3 \times -9 \end{pmatrix} = \begin{pmatrix} -9 & 0 \\ 18 & -27 \end{pmatrix} \] ### Step 4: Calculate \(2A + 3A^t\) Now we can add \(2A\) and \(3A^t\): \[ 2A + 3A^t = \begin{pmatrix} -6 & 12 \\ 0 & -18 \end{pmatrix} + \begin{pmatrix} -9 & 0 \\ 18 & -27 \end{pmatrix} = \begin{pmatrix} -6 + (-9) & 12 + 0 \\ 0 + 18 & -18 + (-27) \end{pmatrix} \] Calculating the elements: \[ = \begin{pmatrix} -15 & 12 \\ 18 & -45 \end{pmatrix} \] ### Step 5: Calculate \(2A^t\) Next, we will multiply the transpose \(A^t\) by 2: \[ 2A^t = 2 \times \begin{pmatrix} -3 & 0 \\ 6 & -9 \end{pmatrix} = \begin{pmatrix} 2 \times -3 & 2 \times 0 \\ 2 \times 6 & 2 \times -9 \end{pmatrix} = \begin{pmatrix} -6 & 0 \\ 12 & -18 \end{pmatrix} \] ### Step 6: Calculate \(3A\) Again We already calculated \(3A\) earlier, but for clarity, we will do it again: \[ 3A = 3 \times \begin{pmatrix} -3 & 6 \\ 0 & -9 \end{pmatrix} = \begin{pmatrix} 3 \times -3 & 3 \times 6 \\ 3 \times 0 & 3 \times -9 \end{pmatrix} = \begin{pmatrix} -9 & 18 \\ 0 & -27 \end{pmatrix} \] ### Step 7: Calculate \(2A^t - 3A\) Now we can subtract \(3A\) from \(2A^t\): \[ 2A^t - 3A = \begin{pmatrix} -6 & 0 \\ 12 & -18 \end{pmatrix} - \begin{pmatrix} -9 & 18 \\ 0 & -27 \end{pmatrix} = \begin{pmatrix} -6 - (-9) & 0 - 18 \\ 12 - 0 & -18 - (-27) \end{pmatrix} \] Calculating the elements: \[ = \begin{pmatrix} 3 & -18 \\ 12 & 9 \end{pmatrix} \] ### Final Answers Thus, the final answers are: (i) \(2A + 3A^t = \begin{pmatrix} -15 & 12 \\ 18 & -45 \end{pmatrix}\) (ii) \(2A^t - 3A = \begin{pmatrix} 3 & -18 \\ 12 & 9 \end{pmatrix}\)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9C|38 Videos
  • MATRICES

    ICSE|Exercise Exercise 9D|25 Videos
  • MATRICES

    ICSE|Exercise Exercise 9A|15 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

Given : M =[(5,-3),(-2, 4)] find its transpose matrix M'. If possible, find : (i) M+M ""^(t) (ii) M^(t)-M

If matrix A=[{:(,2,1,3),(,4,-3,2):}] and B=[{:(,3,-2),(,7,4):}] , find transpose matrices A^t and B^t . If possible, find (i) A+A^t (ii) B+B^t

Given A=[{:(,1,4),(,2,3):}] and B=[{:(,-4,-1),(,-3,-2):}] (i) find the matrix 2A+B. (ii) find a matrix C such that : C+B=[{:(,0,0),(,0,0):}]

If A=[{:(,2,1,-1),(,0,1,-2):}] find: (i) A^(t).A (ii) A.A^(t) where A^t is the transpose of matrix A.

If A=[{:(,2,5),(,1,3):}], B=[{:(,4,-2),(,-1,3):}] and I is the identify matric of the same order and A^(t) is the transpose of matrix A, find A^(t) B+BI .

find the transpose of the matrix A=[{:(1,3,-4),(0,2,1):}].

If A=[(0,-1,2),(1,0,3),(-2,-3,0)], then A+2A^t equals (A) A (B) -A^t (C) A^t (D) 2A^2

Let A be any 3xx2 matrix. Then prove that det. (A A^(T))=0 .

If matrix A=[1\ \ 2\ \ 3] , write A A^T .

Let A and B are square matrices of order 2 such that A+adj(B^(T))=[(3,2),(2,3)] and A^(T)-adj(B)=[(-2,-1),(-1, -1)] , then A^(2)+2A^(3)+3A^(4)+5A^(5) is equal to (where M^(T) and adj(M) represent the transpose matrix and adjoint matrix of matrix M respectively and I represents the identity matrix of order 2)