Home
Class 10
MATHS
If I is the unit matrix of order 2 xx 2 ...

If I is the unit matrix of order `2 xx 2` find the matrix M, such that
(i) `M-2I=3 [{:(,-1,0),(,4,1):}]`
(ii) `5M+3I=4[{:(,2,-5),(,0,-3):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the matrix \( M \) for the two given equations involving the identity matrix \( I \) of order \( 2 \times 2 \). ### Step 1: Solve the first equation \( M - 2I = 3 \begin{pmatrix} -1 & 0 \\ 4 & 1 \end{pmatrix} \) 1. **Write down the identity matrix \( I \)**: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] 2. **Multiply the matrix by 3**: \[ 3 \begin{pmatrix} -1 & 0 \\ 4 & 1 \end{pmatrix} = \begin{pmatrix} -3 & 0 \\ 12 & 3 \end{pmatrix} \] 3. **Substitute this into the equation**: \[ M - 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -3 & 0 \\ 12 & 3 \end{pmatrix} \] 4. **Calculate \( 2I \)**: \[ 2I = 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \] 5. **Rearranging the equation to solve for \( M \)**: \[ M = \begin{pmatrix} -3 & 0 \\ 12 & 3 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \] 6. **Add the matrices**: \[ M = \begin{pmatrix} -3 + 2 & 0 + 0 \\ 12 + 0 & 3 + 2 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 12 & 5 \end{pmatrix} \] ### Step 2: Solve the second equation \( 5M + 3I = 4 \begin{pmatrix} 2 & -5 \\ 0 & -3 \end{pmatrix} \) 1. **Multiply the matrix by 4**: \[ 4 \begin{pmatrix} 2 & -5 \\ 0 & -3 \end{pmatrix} = \begin{pmatrix} 8 & -20 \\ 0 & -12 \end{pmatrix} \] 2. **Substitute this into the equation**: \[ 5M + 3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 8 & -20 \\ 0 & -12 \end{pmatrix} \] 3. **Calculate \( 3I \)**: \[ 3I = 3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \] 4. **Rearranging the equation to solve for \( 5M \)**: \[ 5M = \begin{pmatrix} 8 & -20 \\ 0 & -12 \end{pmatrix} - \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \] 5. **Subtract the matrices**: \[ 5M = \begin{pmatrix} 8 - 3 & -20 - 0 \\ 0 - 0 & -12 - 3 \end{pmatrix} = \begin{pmatrix} 5 & -20 \\ 0 & -15 \end{pmatrix} \] 6. **Divide by 5 to find \( M \)**: \[ M = \frac{1}{5} \begin{pmatrix} 5 & -20 \\ 0 & -15 \end{pmatrix} = \begin{pmatrix} 1 & -4 \\ 0 & -3 \end{pmatrix} \] ### Final Result: The matrix \( M \) is: \[ M = \begin{pmatrix} -1 & 0 \\ 12 & 5 \end{pmatrix} \text{ from the first equation and } M = \begin{pmatrix} 1 & -4 \\ 0 & -3 \end{pmatrix} \text{ from the second equation.} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9C|38 Videos
  • MATRICES

    ICSE|Exercise Exercise 9D|25 Videos
  • MATRICES

    ICSE|Exercise Exercise 9A|15 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

Find the matrix A such that A.[{:(2,3),(4,5):}]=[{:(0,-4),(10," "3):}].

If [{:(,1,4),(,-2,3):}] +2M=3 [{:(,3,2),(,0,-3):}] find the matrix M.

If A is a matrix of order mxx m such that A^(2) +A + 2I = O , then

In each case given below, find : the order of matrix M, (i) M xx [{:(,1,1),(,0,2):}]=[1,2]

If I_3 is the identity matrix of order 3 then I_3^-1 is (A) 0 (B) 3I_3 (C) I_3 (D) does not exist

If M=[{:(,1,2),(,2,1):}] and I is a unit matrix of the same order as that of M, show that M^2=2M+3I

Find the matrix A such that : [(1 ,0 ),(0 ,1)]A=[(3 ,3 ,5 ),(1, 0 ,1)] (ii) A[(1, 2, 3 ),(4, 5 ,6)]=[(-7,-8,-9 ),(2, 4 ,6)]

In the matrix [[1,0,5],[2,-3,4]] order of matrix matrix is………

If A=[[2,-1],[-1, 2]] and I is the identity matrix of order 2, then show that A^2=4A-3I Hence find A^(-1) .