Home
Class 10
MATHS
If [{:(,1,4),(,-2,3):}] +2M=3 [{:(,3,2),...

If `[{:(,1,4),(,-2,3):}] +2M=3 [{:(,3,2),(,0,-3):}]` find the matrix M.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the question, we need to find the matrix \( M \) from the equation: \[ \begin{pmatrix} 1 & 4 \\ -2 & 3 \end{pmatrix} + 2M = 3 \begin{pmatrix} 3 & 2 \\ 0 & -3 \end{pmatrix} \] ### Step 1: Multiply the matrix on the right side by 3 We start by calculating the right-hand side of the equation: \[ 3 \begin{pmatrix} 3 & 2 \\ 0 & -3 \end{pmatrix} = \begin{pmatrix} 3 \times 3 & 3 \times 2 \\ 3 \times 0 & 3 \times -3 \end{pmatrix} = \begin{pmatrix} 9 & 6 \\ 0 & -9 \end{pmatrix} \] ### Step 2: Rewrite the equation Now, we can rewrite the equation as: \[ \begin{pmatrix} 1 & 4 \\ -2 & 3 \end{pmatrix} + 2M = \begin{pmatrix} 9 & 6 \\ 0 & -9 \end{pmatrix} \] ### Step 3: Move the matrix on the left side to the right side Next, we subtract the matrix on the left side from both sides: \[ 2M = \begin{pmatrix} 9 & 6 \\ 0 & -9 \end{pmatrix} - \begin{pmatrix} 1 & 4 \\ -2 & 3 \end{pmatrix} \] ### Step 4: Perform the subtraction Now, we perform the matrix subtraction: \[ \begin{pmatrix} 9 - 1 & 6 - 4 \\ 0 - (-2) & -9 - 3 \end{pmatrix} = \begin{pmatrix} 8 & 2 \\ 2 & -12 \end{pmatrix} \] ### Step 5: Divide by 2 to isolate M Now, we divide the resulting matrix by 2 to solve for \( M \): \[ M = \frac{1}{2} \begin{pmatrix} 8 & 2 \\ 2 & -12 \end{pmatrix} = \begin{pmatrix} \frac{8}{2} & \frac{2}{2} \\ \frac{2}{2} & \frac{-12}{2} \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 1 & -6 \end{pmatrix} \] ### Final Result Thus, the matrix \( M \) is: \[ M = \begin{pmatrix} 4 & 1 \\ 1 & -6 \end{pmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9C|38 Videos
  • MATRICES

    ICSE|Exercise Exercise 9D|25 Videos
  • MATRICES

    ICSE|Exercise Exercise 9A|15 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

If B and C are two matrices such that B=[{:(,1,3),(,-2,0):}] and C=[{:(,17,7),(,-4,-8):}] , find the matrix M so that BM=C.

Given A=[{:(,1,4),(,2,3):}] and B=[{:(,-4,-1),(,-3,-2):}] (i) find the matrix 2A+B. (ii) find a matrix C such that : C+B=[{:(,0,0),(,0,0):}]

If A=[{:(4,4),(-2,6):}] and B=[{:(2,1),(3,-2):}] find the matrix D such that 3A -2B + 2D = 0

If P=[(6,-2),(4,-6):}] and Q = [{:(5,3),(2,0):}] find the matrix M such that 2Q - 3P - 3M =0

If matrix X=[{:(,-3,4),(,2,-3):}] [{:(,2),(,-2):}] and 2X-3Y=[{:(,10),(,-8):}] find the matrix 'X' and matrix Y.

if A=[{:(1,-4,5),(2,1,-3):}]and B=[{:(2,3,-1),(1,2,3):}] then find a matrix C if 2A+3B -4C is a zero matrix.

If A= [(3,1),(4,0)], B= [(1,-2),(2,3)] and 3A- 5B + 2X= [(4,3),(0,1)] , find the matrix X.

If [(9,-1,4),(-2,1,3)]=A+[(1,2,-1),(0,4,9)], then find the matrix A.

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0